Select Page


  • Barber M. Methicillin-resistant staphylococci. J Clin Pathol. 1961;14:385–93.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim. 2018;4:18033.

    Article 
    PubMed 

    Google Scholar
     

  • Samuel P, Kumar YS, Suthakar BJ, Karawita J, Sunil Kumar D, Vedha V, et al. Methicillin-resistant Staphylococcus aureus colonization in intensive care and burn units: a narrative review. Cureus. 2023;15:e47139.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sergelidis D, Angelidis AS. Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Lett Appl Microbiol. 2017;64:409–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nannini E, Murray BE, Arias CA. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharm. 2010;10:516–21.

    Article 
    CAS 

    Google Scholar
     

  • Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, et al. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 2021;16:65–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015;21:702–14.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arifuzzaman M, Won TH, Li TT, Yano H, Digumarthi S, Heras AF, et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature. 2022;611:578–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, et al. Human gut bacteria produce Tau(Eta)17-modulating bile acid metabolites. Nature. 2022;603:907–12.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 2020;582:566–70.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581:475–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature. 2020;577:410–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li W, Hang S, Fang Y, Bae S, Zhang Y, Zhang M, et al. A bacterial bile acid metabolite modulates T(reg) activity through the nuclear hormone receptor NR4A1. Cell Host Microbe. 2021;29:1366–77 e1369.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barman S, Buzoglu Kurnaz L, Yang X, Nagarkatti M, Nagarkatti P, Decho AW, et al. Facially amphiphilic bile acid-functionalized antimicrobials: combating pathogenic bacteria, fungi, and their biofilms. ACS Infect Dis. 2023;9:1769–82.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Su J, Li H, Hu J, Wang D, Zhang F, Fu Z, et al. LcCCL28-25, derived from piscine chemokine, exhibits antimicrobial activity against gram-negative and gram-positive bacteria in vitro and in vivo. Microbiol Spectr. 2022;10:e0251521.

    Article 
    PubMed 

    Google Scholar
     

  • Wang C, Ji Y, Huo X, Li X, Lu W, Zhang Z, et al. Discovery of salifungin as a repurposed antibiotic against methicillin-resistant Staphylococcus aureus with limited resistance development. ACS Infect Dis. 2024;10:1576–89.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu J, Wang Y, Wang W, Wu B, Lu Y, Du J, et al. Mptx2 defends against peritoneal infection by methicillin-resistant staphylococcus aureus. Int Immunopharmacol. 2022;108:108856.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rajasekaran G, Kim EY, Shin SY. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim Biophys Acta Biomembr. 2017;1859:722–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rajasekaran G, Dinesh Kumar S, Nam J, Jeon D, Kim Y, Lee CW, et al. Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs. Biochim Biophys Acta Biomembr. 2019;1861:256–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sandberg A, Hessler JH, Skov RL, Blom J, Frimodt-Moller N. Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. Antimicrob Agents Chemother. 2009;53:1874–83.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yan W, Chen S, Wang Y, You Y, Lu Y, Wang W, et al. Loss of Mptx2 alters bacteria composition and intestinal homeostasis potentially by impairing autophagy. Commun Biol. 2024;7:94.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Golden GJ, Toledo AG, Marki A, Sorrentino JT, Morris C, Riley RJ, et al. Endothelial heparan sulfate mediates hepatic neutrophil trafficking and injury during Staphylococcus aureus Sepsis. mBio. 2021;12:e0118121.

    Article 
    PubMed 

    Google Scholar
     

  • Shen W, Yang N, Teng D, Hao Y, Ma X, Mao R, et al. Design and high expression of non-glycosylated lysostaphins in pichia pastoris and their pharmacodynamic study. Front Microbiol. 2021;12:637662.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyamoto Y, Kikuta J, Matsui T, Hasegawa T, Fujii K, Okuzaki D, et al. Periportal macrophages protect against commensal-driven liver inflammation. Nature. 2024;629:901–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.

    Article 
    PubMed 

    Google Scholar
     

  • Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem. Microbiol Spectr. 2019;7:GPP3-0057-2018.

  • Falany CN, Johnson MR, Barnes S, Diasio RB. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem. 1994;269:19375–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Foley MH, Walker ME, Stewart AK, O’Flaherty S, Gentry EC, Patel S, et al. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat Microbiol. 2023;8:611–28.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe. 2017;45:86–100.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dobson TE, Maxwell AR, Ramsubhag A. Antimicrobial cholic acid derivatives from the Pitch Lake bacterium Bacillus amyloliquefaciens UWI-W23. Steroids. 2018;135:50–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sannasiddappa TH, Lund PA, Clarke SR. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front Microbiol. 2017;8:1581.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin C, Wang Y, Le M, Chen KF, Jia YG. Recent progress in bile acid-based antimicrobials. Bioconjug Chem. 2021;32:395–410.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018;16:51–65.

    Article 
    PubMed 

    Google Scholar
     

  • Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84:e00026–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9:522–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Torres NS, Abercrombie JJ, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Leung KP. Screening a commercial library of pharmacologically active small molecules against Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2016;60:5663–72.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hurdle JG, O’Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol. 2011;9:62–75.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Epand RF, Pollard JE, Wright JO, Savage PB, Epand RM. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents Chemother. 2010;54:3708–13.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen WH, Shao XB, Moellering R, Wennersten C, Regen SL. A bioconjugate approach toward squalamine mimics: Insight into the mechanism of biological action. Bioconjug Chem. 2006;17:1582–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang L, Zhan C, Huang X, Hong L, Fang L, Wang W, et al. Durable antibacterial cotton fabrics based on natural borneol-derived anti-MRSA agents. Adv Health Mater. 2020;9:e2000186.

    Article 

    Google Scholar
     



  • Source link

    Christmas Pop-up