Select Page


  • Calabon MS, Jones EBG, Pang K-L, Abdel-Wahab MA, Jin J, Devadatha B, et al. Updates on the classification and numbers of marine fungi. Bot Mar. 2023;66:213–38.

    Article 
    CAS 

    Google Scholar
     

  • Hyde KD, Jones EBG, Leaño E, Pointing SB, Poonyth AD, Vrijmoed LLP. Role of fungi in marine ecosystems. Biodivers Conserv. 1998;7:1147–61.

    Article 

    Google Scholar
     

  • Wijayawardene NN, Dai D-Q, Jayasinghe PK, Gunasekara SS, Nagano Y, Tibpromma S, et al. Ecological and oceanographic perspectives in future marine fungal taxonomy. J Fungi. 2022;8:1141.

    Article 

    Google Scholar
     

  • Gladfelter AS, James TY, Amend AS. Marine fungi. Curr Biol. 2019;29:R191–R195.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, et al. Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis. 2018;76:117–27.

    Article 
    CAS 

    Google Scholar
     

  • El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: a whole new world of pharmaceutical therapy exploration. Heliyon. 2021;7:e06362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao L-W, Zhang P. An update on chemistry and bioactivities of secondary metabolites from the marine algal-derived endophytic fungi. Phytochem Rev. 2023;22:587–614.

    Article 
    CAS 

    Google Scholar
     

  • Ji N-Y, Wang B-G. Mycochemistry of marine algicolous fungi. Fungal Diversity. 2016;80:301–42.

    Article 

    Google Scholar
     

  • WHO. Global action plan on antimicrobial resistance. WHO, (2016).

  • Esposito S, Blasi F, Curtis N, Kaplan S, Lazzarotto T, Meschiari M, et al. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics. 2023;12:742.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yurchenko AN, Smetanina OF, Ivanets EV, Phan TTH, Ngo NTD, Zhuravleva OI, et al. Auroglaucin-related neuroprotective compounds from Vietnamese marine sediment-derived fungus Aspergillus niveoglaucus. Nat Prod Res. 2020;34:2589–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smetanina OF, Yurchenko AN, Girich (Ivanets) EV, Trinh PTH, Antonov AS, Dyshlovoy SA, et al. Biologically active echinulin-related indolediketopiperazines from the marine sediment-derived fungus Aspergillus niveoglaucus. Molecules. 2020;25:61.

    Article 
    CAS 

    Google Scholar
     

  • Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78:343–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leshchenko EV, Berdyshev DV, Yurchenko EA, Antonov AS, Borkunov GV, Kirichuk NN, et al. Bioactive polyketides from the natural complex of the sea urchin-associated fungi Penicillium sajarovii KMM 4718 and Aspergillus protuberus KMM 4747. Int J Mol Sci. 2023;24:16568.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura KMEGA X. Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol. 1992;9:678–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Nesterenko LE, Popov RS, Zhuravleva OI, Kirichuk NN, Chausova VE, Krasnov KS, et al. A Study of the Metabolic Profiles of Penicillium dimorphosporum KMM 4689 Which Led to Its Re-Identification as Penicillium hispanicum. Fermentation. 2023;9:337.

    Article 
    CAS 

    Google Scholar
     

  • Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395.

    Article 

    Google Scholar
     

  • Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminformatics. 2016;8:3.

    Article 

    Google Scholar
     

  • Campbell J. High‐throughput assessment of bacterial growth inhibition by optical density measurements. Curr Protoc. Chem Biol. 2010;2:195–208.


    Google Scholar
     

  • Kifer D, Mužinić V, Klarić MŠ. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1, 8-cineole against Staphylococcus aureus planktonic and biofilm growth. J Antibiot (Tokyo). 2016;69:689–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grosdidier A, Zoete V. Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–277.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks BR, Brooks Iii CL, Mackerell Jr AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30:1545–614.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haberthür U, Caflisch A. FACTS: Fast analytical continuum treatment of solvation. J Comput Chem. 2008;29:701–15.

    Article 
    PubMed 

    Google Scholar
     

  • Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 2011;32:2149–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurchenko EA, Khmel OO, Nesterenko LE, Aminin DL. The Kelch/Nrf2 antioxidant system as a target for some marine fungal metabolites. Oxygen. 2023;3:374–85.

    Article 
    CAS 

    Google Scholar
     

  • Abegaz B, Dagne E. Antracene derivatives of Rhamnus prinoides. Bull Chem Soc Ethop. 1988;2:15–20.

    CAS 

    Google Scholar
     

  • Cameron DW, Edmonds JS, Raverty WD. Oxidation of emodin anthrone and stereochemistry of emodin bianthrone. Aust J Chem. 1976;29:1535–48.

    Article 
    CAS 

    Google Scholar
     

  • Tan JJ, Liu XY, Yang Y, Li FH, Tan CH, Li YM. Aspergillolide, a new 12-membered macrolide from sea cucumber-derived fungus Aspergillus sp. S-3-75. Nat Prod Res. 2020;34:1131–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dossena, A, Marchelli, R, Pochini A. New metabolites of Aspergillus amstelodami related to the biogenesis of neoechinulin. J Chem Soc Chem Commun. 1974:771–2.

  • Lv D, Xia J, Guan X, Lai Q, Zhang B, Lin J, et al. Indole diketopiperazine alkaloids isolated from the marine-derived fungus Aspergillus chevalieri MCCC M23426. Front Microbiol. 2022;7:950857.

    Article 

    Google Scholar
     

  • Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12:547–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nitulescu G, Margina D, Zanfirescu A, Olaru OT, Nitulescu GM. Targeting bacterial sortases in search of anti-virulence therapies with low risk of resistance development. Pharmaceuticals. 2021;14:415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pishesha N, Ingram JR, Ploegh HL, Sortase A. A model for transpeptidation and its biological applications. Annu Rev Cell Dev Biol. 2018;34:163–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maresso AW, Schneewind O. Sortase as a target of anti-infective therapy. Pharm Rev. 2008;60:128–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nitulescu G, Margina D, Zanfirescu A, Olaru OT, Nitulescu GM. Molecular docking and screening studies of new natural sortase A inhibitors. Int J Mol Sci. 2017;18:2217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Kashef DH, Obidake DD, Schiedlauske K, Deipenbrock A, Scharf S, Wang H, et al. Indole diketopiperazine alkaloids from the marine sediment-derived fungus Aspergillus chevalieri against pancreatic ductal adenocarcinoma. Mar Drugs. 2024;22:5.

    Article 
    CAS 

    Google Scholar
     

  • Chen AJ, Hubka V, Frisvad JC, Visagie CM, Houbraken J, Meijer M, et al. Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food. Stud Mycol. 2017;88:37–135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nies J, Li SM. Prenylation and dehydrogenation of a C2-reversely prenylated diketopiperazine as a branching point in the biosynthesis of echinulin family alkaloids in Aspergillus ruber. ACS Chem Biol. 2021;16:185–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radzom M, Zeeck A, Antal N, Fiedler HP. Fogacin, a novel cyclic octaketide produced by Streptomyces strain Tü 6319. J Antibiot. 2006;59:315–7.

    Article 
    CAS 

    Google Scholar
     

  • Shao C, Wang C, Wei M, Gu Y, Xia X, She Z, et al. Structure elucidation of two new xanthone derivatives from the marine fungus Penicillium sp. (ZZF 32#) from the South China Sea. Magn Reson Chem. 2008;46:1066–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C-N, Lu H-M, Gao C-H, Guo L, Zhan Z-Y, Wang J-J, et al. Cytotoxic benzopyranone and xanthone derivatives from a coral symbiotic fungus Cladosporium halotolerans GXIMD 02502. Nat Prod Res. 2021;35:5596–603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao Y-J, Zou Z-B, Xie M-M, Zhang Y, Xu L, Yu H-Y, et al. Ferroptosis inhibitory compounds from the deep-sea-derived fungus Penicillium sp. MCCC 3A00126. Mar Drugs. 2023;21:234.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das P, Babbar P, Malhotra N, Sharma M, Jachak GR, Gonnade RG, et al. Specific stereoisomeric conformations determine the drug potency of cladosporin scaffold against malarial parasite. J Med Chem. 2018;61:5664–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott PM, Van Walbeek W, MacLean WM. Cladosporin, a new antifungal metabolite from Cladosporium cladosporioides. J Antibiot. 1971;24:747–55.

    Article 
    CAS 

    Google Scholar
     

  • Jacyno JM, Harwood JS, Cutler HG, Lee MK. Isocladosporin, a biologically active isomer of cladosporin from Cladosporium cladosporioides. J Nat Prod. 1993;56:1397–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Putkaradze N, Dato L, Kırtel O, Hansen J, Welner DH. Enzymatic glycosylation of aloesone performed by plant UDP-dependent glycosyltransferases. Glycobiology. 2024;34:cwae050.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abe I, Watanabe T, Lou W, Noguchi H. Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase. FEBS J. 2006;273:208–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navarro-Muñoz JC, Collemare J. Evolutionary histories of type III polyketide synthases in fungi. Front Microbiol. 2020;10:3018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gessler N, Egorova A, Belozerskaya T. Fungal anthraquinones. Appl Biochem Microbiol. 2013;49:85–99.

    Article 
    CAS 

    Google Scholar
     

  • Anke H, Kolthoum I, Zähner H, Laatsch H. Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Arch Microbiol. 1980;126:223–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurobane I, Vining LC, Gavin McInnes A. Biosynthetic relationships among the secalonic acids isolation of emodin, endocrocin and secalonic acids from Pyrenochaeta terrestris and Aspergillus aculeatus. J Antibiot. 1979;32:1256–66.

    Article 
    CAS 

    Google Scholar
     

  • Hafez Ghoran S, Taktaz F, Ayatollahi SA, Kijjoa A. Anthraquinones and their analogues from marine-derived fungi: chemistry and biological activities. Mar Drugs. 2022;20:474.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha Y, Zhou Y, Ma M, Wang N, Wang P, Zhang Z. Antimicrobial metabolites from the marine-derived fungus Aspergillus sp. ZZ1861. Phytochemistry. 2024;224:114164.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z-G, Fujii I, Ebizuka Y, Sankawa U. Purification and characterization of emodinanthrone oxygenase from Aspergillus terreus. Phytochemistry. 1995;38:299–305.

    Article 
    CAS 

    Google Scholar
     

  • Mondal A, Saha N, Rajput A, Singh SK, Roy B, Husain SM. Chemoenzymatic reduction of citreorosein and its implications on aloe-emodin and rugulosin C (bio)synthesis. Org Biomol Chem. 2019;17:8711–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh SK, Mondal A, Saha N, Husain SM. Identification and characterization of an anthrol reductase from Talaromyces islandicus (Penicillium islandicum) WF-38-12. Green Chem. 2019;21:6594–9.

    Article 
    CAS 

    Google Scholar
     

  • Shakour ZT, Farag MA. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives. J Adv Res. 2022;39:257–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, et al. Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res, Technol Educ Trop Appl Microbiol. Microb Biotechnol. 2010;1:567–76.


    Google Scholar
     

  • Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, et al. Antibacterial activities of anthraquinones: structure–activity relationships and action mechanisms. RSC Med Chem. 2023;14:1446–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janeczko M. Emodin reduces the activity of (1, 3)-D-glucan synthase from and does not interact with caspofungin. Pol J Microbiol. 2018;67:463–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu C, Wang H, Lv W, Xu P, Zhu J, Xie J, et al. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila. Fish Sci. 2011;77:375–84.

    Article 
    CAS 

    Google Scholar
     

  • Raghuveer D, Pai VV, Murali TS, Nayak R. Exploring anthraquinones as antibacterial and antifungal agents. ChemistrySelect. 2023;8:e202204537.

    Article 
    CAS 

    Google Scholar
     

  • Zhuravleva OI, Chingizova EA, Oleinikova GK, Starnovskaya SS, Antonov AS, Kirichuk NN, et al. Anthraquinone derivatives and other aromatic compounds from marine fungus Asteromyces cruciatus KMM 4696 and their effects against Staphylococcus aureus. Mar Drugs. 2023;21:431.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalothorn T, Rukachaisirikul V, Phongpaichit S, Pannara S, Tansakul C. Synthesis and antibacterial activity of emodin and its derivatives against methicillin-resistant Staphylococcus aureus. Tetrahedron Lett. 2019;60:151004.

    Article 
    CAS 

    Google Scholar
     

  • Đukanović S, Ganić T, Lončarević B, Cvetković S, Nikolić B, Tenji D, et al. Elucidating the antibiofilm activity of frangula emodin against Staphylococcus aureus biofilms. J Appl Microbiol. 2022;132:1840–55.

    Article 
    PubMed 

    Google Scholar
     

  • Lu F, Wu X, Hu H, He Z, Sun J, Zhang J, et al. Emodin combined with multiple-low-frequency, low-intensity ultrasound to relieve osteomyelitis through sonoantimicrobial chemotherapy. Microbiol Spectr. 2022;10:e00544–00522.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Xiong Z, Li C, Liu D, Li X, Xu J, et al. Multiple Beneficial Effects of Aloesone from Aloe vera on LPS-Induced RAW264.7 Cells, Including the Inhibition of Oxidative Stress, Inflammation, M1 Polarization, and Apoptosis. Molecules. 2023;28:1617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim K-S, Cui X, Lee D-S, Sohn JH, Yim JH, Kim Y-C, et al. Anti-Inflammatory Effect of Neoechinulin A from the Marine Fungus Eurotium sp. SF-5989 through the Suppression of NF-кB and p38 MAPK Pathways in Lipopolysaccharide-Stimulated RAW264.7 Macrophages. Molecules. 2013;18:13245–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan L-H, Li P-H, Li X-M, Yang S-Q, Liu K-C, Wang B-G, et al. Chevalinulins A and B, Proangiogenic Alkaloids with a Spiro[bicyclo[2.2.2]octane-diketopiperazine] Skeleton from Deep-Sea Cold-Seep-Derived Fungus Aspergillus chevalieri CS-122. Org Lett. 2022;24:2684–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea AO, et al. Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Frontiers in Nutrition. 2021;8:664197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan L-H, Du F-Y, Li X-M, Yang S-Q, Wang B-G, Li X. Antibacterial indole diketopiperazine alkaloids from the deep-sea cold seep-derived fungus Aspergillus chevalieri. Mar Drugs. 2023;21:195.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song W, Wang L, Zhao Y, Lanzi G, Wang X, Zhang C, et al. Hibifolin, a natural sortase a inhibitor, attenuates the pathogenicity of Staphylococcus aureus and enhances the antibacterial activity of cefotaxime. Microbiol Spectrum. 2022;10:e00950–00922.


    Google Scholar
     

  • Jiang T, Yuan D, Wang R, Zhao C, Xu Y, Liu Y, et al. Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia. Med Microbiol Immunol. 2023;212:421–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otto M. Critical assessment of the prospects of quorum-quenching therapy for Staphylococcus aureus infection. Int J Mol Sci. 2023;24:4025.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bapat RA, Parolia A, Chaubal T, Yang HJ, Kesharwani P, Phaik KS, et al. Recent update on applications of quaternary ammonium silane as an antibacterial biomaterial: a novel drug delivery approach in dentistry. Frontiers in Microbiology. 2022;13:927282.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo). 2023;76:431–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Christmas Pop-up