Select Page


  • Liu Y, Chen L, Qin XY. Investigation on the harm of tobacco bacterial wilt and isolation of pathogenic bacteria in Yunnan Province. China Agron Bull. 2007;23:4.

    CAS 

    Google Scholar
     

  • Zhou XJ, Wang J, Yang YW. Research progress of tobacco bacterial wilt. Bull Microbiol. 2012;39:8.

    CAS 

    Google Scholar
     

  • Wang LL, Shi JX, Yuan SF. Microbial organic fertilizer combined with soil conditioner to control tobacco bacterial wilt. J Soil Sci. 2013;50:153–8.


    Google Scholar
     

  • Allard HA. The mosaic disease of tobacco. Science. 1912;36:875–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaji K, Sonoda T, Tairako K. Streak disease of tomato fruit caused by tobacco mosaic virus (TMV) and its control by attenuated TMV. Ann Phytopathol Soc Japan. 1993;59:324.

  • Liu XD, Xiao QN. Preliminary study on the mechanism of botanical pesticides against tobacco mosaic. Chin J Biol Control. 1997;13:128–31.


    Google Scholar
     

  • Li HG, Zhong Q, Zhang S. Field control effect of 8 kinds of medicaments on tobacco mosaic virus disease. Acta Agriculturae Jiangxi. 2012;24:100–1.

    CAS 

    Google Scholar
     

  • Fan YL, WB N, Hu ZD. Symptom identification and comprehensive control technology of tomato virus disease. Northwest Horticulture Veg. 2015;2:33–35.


    Google Scholar
     

  • Dong Y. Study on sustained-release fungicide of controlling tobacco black shank. Chin Acad Agric Sci. 2015;1:1–57.


    Google Scholar
     

  • Shang HS. Modern Plant Immunology, China Agricultural Press, 2013-02-01.

  • Yang JQ, Jiang T, Cheng HY. Tobacco Pathology. University of Science and Technology of China Press, 2003-07.

  • Nie N. Application of biotechnology in plant disease and pest control. Agric Dev Equip. 2024;7:184–6.


    Google Scholar
     

  • Zhang G, Peng YL, Mei JY, et al. Evaluation of biocontrol potential of tobacco phytophthora against actinomycetes. Chin J Biol Control. 2023;39:667–75.


    Google Scholar
     

  • Li KQ, Guo YH, Wang JZ, Wang ZY, Gao J. Streptomyces aquilus sp. nov., a novel actinomycete isolated from a Chinese medicinal plant. Int J Syst Evol Microbiol. 2020;70:1912–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atlas RM. Handbook of microbiological media. In: Parks LC, editor. CRC Press, Boca Raton; 1993.

  • Jiang CR, Ruan JS. Two new species and a new variety of Ampullarella. Acta Microbiol Sin. 1982;22:207–11.


    Google Scholar
     

  • Shirling EB, Gottlieb D. Methods for characterisation of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Article 

    Google Scholar
     

  • Ridgway R. Color standards and color nomenclature. Washington, DC; Published by the author (1850-1929), 1912. p 1–43.

  • Actinomycete Systematics: Principle, Methods and Practice. Beijing: Science press (Q939); 2007.

  • MIDI. Sherlock Microbial Identification System Operating Manual, Version 6.0. Newark DE: MIDI Inc,; 2005.


    Google Scholar
     

  • Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol. 1987;19:161–207.

    Article 
    CAS 

    Google Scholar
     

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol. 1977;100:221–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. Chem Methods Bacterial Syst. 1985;20:173–99.

    CAS 

    Google Scholar
     

  • Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article 
    CAS 

    Google Scholar
     

  • Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol. 1970;20:435–43.

    CAS 

    Google Scholar
     

  • Lane DJ. 16S/23S RNA sequencing. In: Stackebrandt E, Goodfellow M, editors, Nucleic acid techniques in bacterial systematics. London: Wiley;1991. p. 115–75.

  • Yoon SH, Ha SM, Kwon S, Lim J, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. The RAST server: rapid annotations using subsystems technology. BMC Genom. 2008;9:75.

    Article 

    Google Scholar
     

  • Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–W35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool. 1969;18:1–32.

    Article 

    Google Scholar
     

  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis Version 11. Mol Biol Evol. 2021;38:3022–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.

    Article 

    Google Scholar
     

  • Hu SR, Li KQ, Zhang YF, Wang YF, Gao J. New insights into the threshold values of multi-locus sequence analysis, average nucleotide identity and digital DNA-DNA hybridization in delineating Streptomyces species. Front Microbiol. 2022;13:910277.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, et al. International committee on systematic bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37:463–4.

    Article 

    Google Scholar
     

  • Vincent L, Richard D, Olivier G. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evo. 2015;32:2798–2800.

    Article 

    Google Scholar
     

  • Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat. 1972;106:645–68.

    Article 

    Google Scholar
     



  • Source link

    Christmas Pop-up