Select Page


  • Tanaka S, et al. Isolation of Sporogen-AO1, a Sporogenic Substance, from Aspergillus oryzae. Agricultural Biol Chem. 1984;48:3189–91.

    CAS 

    Google Scholar
     

  • Seiichi T, et al. Structure of sporogen-AO 1, a sporogenic substance of Aspergillus oryzae. Tetrahedron Lett. 1984;25:5907–10.

    Article 

    Google Scholar
     

  • Kitahara T, Kurata H, Mori K. Efficient synthesis of the natural enantiomer of sporogen-AO 1 (13-desoxyphomenone) A sporogenic sesquiterpene from Aspergillus oryzae. Tetrahedron. 1988;44;4339–49.

    Article 
    CAS 

    Google Scholar
     

  • Kitahara T, Kurata H, Mori K. PB82 CHIRAL SYNTHESIS OF ELEMOPHILANE SESQUITERPENES (SPOROGEN-AO 1, PHOMENONE ETC) AS BIOREGULATORS. Int Symp Chem Nat Products. 1988;1988:328.


    Google Scholar
     

  • Tamogami S, et al. Synthesis of the 5-demethyl-6-deoxy analogue of sporogen AO-1, a sporogenic substance of Aspergillus oryzae. Biosci Biotechnol Biochem. 1996;60;1372–4.

    Article 
    CAS 

    Google Scholar
     

  • Daengrot C, et al. Eremophilane sesquiterpenes and diphenyl thioethers from the soil fungus Penicillium copticola PSU-RSPG138. J Nat Products. 2015;78:615–22.

    Article 
    CAS 

    Google Scholar
     

  • Yurchenko AN, et al. Biologically active metabolites of the facultative marine fungus Penicillium citrinum. Chem Nat Compd. 2013;48:996–8.

    Article 
    CAS 

    Google Scholar
     

  • Le HM, et al. Chemical composition and biological activities of metabolites from the marine fungi Penicillium sp. isolated from sediments of Co To Island, Vietnam. Molecules. 2019;24, https://doi.org/10.3390/molecules24213830.

  • Mikami S, Kobayashi T, Imataka H. Cell-free protein synthesis systems with extracts from cultured human cells. Methods Mol Biol. 2010;607:43–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mikami S, et al. A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr Purif. 2008;62:190–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machida K, et al. High-throughput screening for a SARS-CoV-2 frameshifting inhibitor using a cell-free protein synthesis system. Biotechniques. 2024;76:161–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machida K, et al. Dynamic interaction of poly(A)-binding protein with the ribosome. Sci Rep. 2018;8:17435.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abe T, et al. Reconstitution of yeast translation elongation and termination in vitro utilizing CrPV IRES-containing mRNA. J Biochem. 2020;167:441–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machida K, et al. A translation system reconstituted with human factors proves that processing of encephalomyocarditis virus proteins 2A and 2B occurs in the elongation phase of translation without eukaryotic release factors. J Biol Chem. 2014;289:31960–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donnelly MLL, et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip. J Gen Virol. 2001;82:1013–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pisareva VP, et al. Translation initiation on mammalian mRNAs with structured 5’UTRs requires DExH-box protein DHX29. Cell. 2008;135:1237–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pestova TV, Hellen CU, Shatsky IN. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol. 1996;16:6859–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pestova TV, et al. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus. RNAs Genes Dev. 1998;12:67–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pestova TV, Hellen CU. Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 2003;17:181–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brönstrup M, Sasse F. Natural products targeting the elongation phase of eukaryotic protein biosynthesis. Nat Prod Rep. 2020;37:752–62.

    Article 
    PubMed 

    Google Scholar
     

  • Grzmil M, Hemmings BA. Translation regulation as a therapeutic target in cancer. Cancer Res. 2012;72:3891–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sridharan S, et al. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Front Oncol. 2019;9;1311.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Christmas Pop-up