Select Page


  • Shaban M, Miao Y, Ullah A, Khan AQ, Menghwar H, Khan AH, Ahmed MM, Tabassum MA, Zhu L. Physiological and molecular mechanism of defense in cotton against Verticillium dahlia. Plant Physiol Biochem. 2018;125:193–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Zhao M, Li T, Wang L, Liao C, Liu D, Zhang H, Zhao Y, Liu L, Ge X, Li B. Interactions between Verticillium dahlia and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. Front Plant Sci. 2023;14:1174281.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song R, Li J, Xie CJ, Jian W, Yang XY. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahlia. Int J Mol Sci. 2020;21:1120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson ZE, Brimble MA. Molecules derived from the extremes of life: a decade later. Nat Prod Rep. 2021;38:24–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie F, Pathom AW. Actinobacteria from desert: diversity and biotechnological applications. Front Microbiol. 2021;12:765531.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parra J, Beaton A, Seipke RF, Wilkinson B, Hutchings MI, Duncan KR. Antibiotics from rare actinomycetes, beyond the genus Streptomyces. Curr Opin Microbiol. 2023;76:102385.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep. 2017;34:1203–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barka EA, Vatsa P, Sanchez L, Gaveau VN, Jacquard C, Meier KJ, Klenk HP, Clément C, Ouhdouch Y, Van WG. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2015;80:1–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol. 2015;13:509–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Covington BC, Xu F, Seyedsayamdost MR. A natural product chemist’s guide to unlocking silent biosynthetic gene clusters. Annu Rev Biochem. 2021;90:763–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L. Accessing hidden microbial biosynthetic potential from underexplored sources for novel drug discovery. Biotechnol Adv. 2023;66:108176.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalkreuter E, Pan G, Cepeda AJ, Shen B. Targeting bacterial genomes for natural product discovery. Trends Pharmacol Sci. 2020;41:13–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R, Li Y, Luzhetskyy A, Medema MH, Pernodet JL, Stadler M, Tormo JR, Genilloud O, Truman AW, Weissman KJ, Takano E, Sabatini S, Stegmann E, Brötz OH, Wohlleben W, Seemann M, Empting M, Hirsch AKH, Loretz B, Lehr CM, Titz A, Herrmann J, Jaeger T, Alt S, Hesterkamp T, Winterhalter M, Schiefer A, Pfarr K, Hoerauf A, Graz H, Graz M, Lindvall M, Ramurthy S, Karlén A, Van DM, Petkovic H, Keller A, Peyrane F, Donadio S, Fraisse L, Piddock LJV, Gilbert IH, Moser HE, Müller R. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5:726–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Tian W, Wang S, Yan X, Jia X, Pierens GK, Chen W, Ma H, Deng Z, Qu X. Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem Biol. 2017;12:1732–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan X, Zhang B, Tian W, Dai Q, Zheng X, Hu K, Liu X, Deng Z, Qu X. Puromycin A, B and C, cryptic nucleosides identified from Streptomyces alboniger NRRL B-1832 by PPtase-based activation. Synth Syst Biotechnol. 2018;3:76–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang C, Zhang Q, Zhu Y, Zhang L, Zhang W, Ma L, Zhang H, Zhang C. Proximicins F and G and diproximicin A: aminofurans from the marine-derived Verrucosispora sp. SCSIO 40062 by overexpression of PPtase Genes. J Nat Prod. 2020;83:1152–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang K, Yan X, Deng Z, Lei C, Qu X. Expanding the chemical diversity of fasamycin via genome mining and biocatalysis. J Nat Prod. 2022;85:943–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sedjoah RA, Sun SW, Abdalmegeed D, Shao YT, Wu GJ, Wu ZC, Wang MX, Zhou JJ, Zheng J, Xin ZH. Overexpression of PPtase in Streptomyces sp. NAUS: increasing biocontrol potential against postharvest tomato fruit decay and isolation of a novel antifungal compound. Postharvest Biol Technol. 2023;204:112462.

  • Bergey J, Jampolsky LM, Goldberg MW. Borrelidin, a new antibiotic with antiborrelia activity and penicillin enhancement properties. Arch Biochem Biophys. 1949;22:476–8.


    Google Scholar
     

  • Li M, Zhang J, Liu C, Fang B, Wang X, Xiang W. Identification of borrelidin binding site on threonyl-tRNA synthetase. Biochem Biophys Res Commun. 2014;451:485–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiang M, Kuo MY, Chu KC, Chang PC, Chang HY, Lee HP. Strain of Streptomyces, and relevant uses thereof. United States Reexamination Certificate First Reexamination, US20000569878. 2000.

  • Liu CX, Zhang J, Wang XJ, Qian PT, Wang JD, Gao YM, Yan YJ, Zhang SZ, Xu PF, Li WB, Xiang WS. Antifungal activity of borrelidin produced by a Streptomyces strain isolated from soybean. J Agric Food Chem. 2012;60:1251–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao YM, Wang XJ, Zhang J, Li M, Liu CX, An J, Jiang L, Xiang WS. Borrelidin, a potent antifungal agent: insight into the antifungal mechanism against Phytophthora sojae. J Agric Food Chem. 2012;60:9874–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otoguro K, Ui H, Ishiyama A, Kobayashi M, Togashi H, Takahashi Y, Masuma R, Tanaka H, Tomoda H, Yamada H, Omura S. In vitro and in vivo antimalarial activities of a non-glycosidic 18-membered macrolide antibiotic, borrelidin, against drug-resistant strains of Plasmodia. J Antibiot. 2003;56:727–9.

    Article 
    CAS 

    Google Scholar
     

  • Habibi D, Ogloff N, Jalili RB, Yost A, Weng AP, Ghahary A, Ong CJ. Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest N Drugs. 2011;30:1361–70.

    Article 

    Google Scholar
     

  • Schulze CJ, Bray WM, Loganzo F, Lam MH, Szal T, Villalobos A, Koehn FE, Linington RG. Borrelidin B: isolation, biological activity, and implications for nitrile biosynthesis. J Nat Prod. 2014;77:2570–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Shin D, Kim SH, Park W, Shin Y, Kim WK, Lee SK, Oh KB, Shin J, Oh DC. Borrelidins C-E: new antibacterial macrolides from a saltern-derived halophilic Nocardiopsis sp. Mar Drugs. 2017;15:E166.

    Article 

    Google Scholar
     

  • Sun J, Shao J, Sun C, Song Y, Li Q, Lu L, Hu Y, Gui C, Zhang H, Ju J. Borrelidins F-I, cytotoxic and cell migration inhibiting agents from mangrove-derived Streptomyces rochei SCSIO ZJ89. Bioorg Med Chem. 2018;26:1488–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Shi J, Liu CL, Xiang L, Ma SY, Li W, Jiao RH, Tan RX, Ge HM. New borrelidin derivatives from an endophytic Streptomyces sp. Tetrahedron Lett. 2018;59:4517–420.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Z, Wu Q, Xie Q, Ling C, Zhang H, Sun CJ. New borrelidins from Onchidium sp. associated Streptomyces olivaceus SCSIO LO13. Chem Biodivers. 2019;17:e1900560.

    Article 
    PubMed 

    Google Scholar
     

  • Olano C, Wilkinson B, Sánchez C, Moss SJ, Sheridan R, Math V, Weston AJ, Braña AF, Martin CJ, Oliynyk M, Méndez C, Leadlay PF, Salas JA. Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions. Chem Biol. 2004;11:87–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Olano C, Moss SJ, Braña, A F, Sheridan RM, Math V, Weston AJ, Méndez C, Leadlay PF, Wilkinson B, Salas JA. Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation. Mol Microbiol. 2004;52:1745–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Christmas Pop-up