Select Page


  • Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet. 2022;399:629–55.

    Article 
    CAS 

    Google Scholar
     

  • WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. 2024. https://www.who.int/publications/i/item/9789240093461.

  • El-Sayed Ahmed M, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and Its Role in the Era of Antibiotic Resistance: An Extended Review (2000–2019). Emerg Microbes Infect. 2020;9:868–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JY, Na IY, Park YK, Ko KS. Genomic Variations between Colistin-Susceptible and -Resistant Pseudomonas Aeruginosa Clinical Isolates and Their Effects on Colistin Resistance. J Antimicrob Chemother. 2014;69:1248–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, et al. PhoQ Mutations Promote Lipid A Modification and Polymyxin Resistance of Pseudomonas Aeruginosa Found in Colistin-Treated Cystic Fibrosis Patients. Antimicrob Agents Chemother. 2011;55:5761–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mlynarcik P, Kolar M. Molecular Mechanisms of Polymyxin Resistance and Detection of Mcr Genes. Biomed Pap. 2019;163:28–38.

    Article 

    Google Scholar
     

  • Trebosc V, Gartenmann S, Tötzl M, Lucchini V, Schellhorn B, Pieren M, et al. Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter Baumannii Clinical Isolates. mBio. 2019;10:e01083–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lima WG, Alves MC, Cruz WS, Paiva MC. Chromosomally Encoded and Plasmid-mediated Polymyxins Resistance in Acinetobacter Baumannii: A Huge Public Health Threat. Eur J Clin Microbiol Infect Dis. 2018;37:1009–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez F, El Chakhtoura NG, Yasmin M, Bonomo RA. Polymyxins: To Combine or Not to Combine?. Antibiotics. 2019;8:38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin Microbiol Rev. 2017;30:557–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherry N, Howden B. Emerging Gram-negative Resistance to Last-Line Antimicrobial Agents Fosfomycin, Colistin and Ceftazidime-Avibactam – Epidemiology, Laboratory Detection and Treatment Implications. Expert Rev Anti Infect Ther. 2018;16:289–306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeannot K, Bolard A, Plésiat P. Resistance to Polymyxins in Gram-Negative Organisms. Int J Antimicrob Agents. 2017;49:526–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts KD. A Synthetic Lipopeptide Targeting Top-Priority Multidrug-Resistant Gram-Negative Pathogens. Nat Commun. 2022;13:1625.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zhao C, Wang Q, Wang X, Chen H, Li H, et al. Evaluation of the in Vitro Activity of New Polymyxin B Analogue SPR206 against Clinical MDR, Colistin-Resistant and Tigecycline-Resistant Gram-Negative Bacilli. J Antimicrob Chemother. 2020;75:2609–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui AL, Yang HX, Yi H, Lv M, Peng XJ, Zheng GH, et al. Design, Synthesis, and Bioactivity Investigation of Novel Cyclic Lipopeptide Antibiotics Targeting Top-Priority Multidrug-Resistant Gram-Negative Bacteria. Eur J Med Chem. 2024;280:116924.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown P, Abbott E, Abdulle O, Boakes S, Coleman S, Divall N, et al. Design of Next Generation Polymyxins with Lower Toxicity: The Discovery of SPR206. ACS Infect Dis. 2019;5:1645–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman DJ, Xie R, Taylor RJ, George AH, Okuda S, Foster PJ, et al. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science. 2018;359:798–801.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. Lipopolysaccharide Transport and Assembly at the Outer Membrane: The PEZ Model. Nat Rev Microbiol. 2016;14:337–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vetterli SU, Moehle K, Robinson JA. Synthesis and Antimicrobial Activity against Pseudomonas Aeruginosa of Macrocyclic β-Hairpin Peptidomimetic Antibiotics Containing N-Methylated Amino Acids. Bioorg Med Chem. 2016;24:6332–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin-Loeches I, Dale GE, Torres A. Murepavadin: A New Antibiotic Class in the Pipeline. Expert Rev Anti Infect Ther. 2018;16:259–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuster M, Brabet E, Oi KK, Desjonquères N, Moehle K, Le Poupon K, et al. Peptidomimetic Antibiotics Disrupt the Lipopolysaccharide Transport Bridge of Drug-Resistant Enterobacteriaceae. Sci Adv. 2023;9:eadg3683.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pahil KS, Gilman M, Baidin V, Clairfeuille T, Mattei P, Bieniossek C, et al. A New Antibiotic Traps Lipopolysaccharide in Its Intermembrane Transporter. Nature. 2024;625:572–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, et al. Computational Identification of a Systemic Antibiotic for Gram-Negative Bacteria. Nat Microbiol. 2022;7:1661–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S, et al. A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature. 2019;576:459–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clairfeuille T, Buchholz KR, Li Q, Verschueren E, Liu P, Sangaraju D, et al. Structure of the Essential Inner Membrane Lipopolysaccharide-PbgA Complex. Nature. 2020;584:479–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamauchi R, Kawano K, Yamaoka Y, Taniguchi A, Yano Y, Takasu K, et al. Development of Antimicrobial Peptide-Antibiotic Conjugates to Improve the Outer Membrane Permeability of Antibiotics Against Gram-Negative Bacteria. ACS Infect Dis. 2022;8:2339–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Dong Y, Lu J, Zhang J, Feng M, Feng J. Design, synthesis and antibacterial activity of novel colistin derivatives with thioether bond-mediated cyclic scaffold. J Antibiot. 2023;76:260–9.

    Article 
    CAS 

    Google Scholar
     

  • Campbell RE, Chen CH, Edelstein CL. Overview of Antibiotic-Induced Nephrotoxicity. Kidney Int Rep. 2023;8:2211–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espinel-Ingroff A, Fothergill A, Ghannoum M, Manavathu E, Ostrosky-Zeichner L, Pfaller M, et al. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M 38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J Clin Microbiol. 2005;43:5243–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Christmas Pop-up