Inès M, Dhouha G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr Res. 2015;416:59–69.
Shu Q, Lou H, Wei T, Liu X, Chen Q. Contributions of glycolipid biosurfactants and glycolipid-modified materials to antimicrobial strategy: a review. Pharmaceutics. 2021;13:227.
Firdose A, Maeda T, Sukri MAM, Yasin NHM, Sabturani N, Aqma WS. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against multidrug resistant Acinetobacter baumannii. Microb Pathog. 2024;193:106743.
Ceresa C, Hutton S, Lajarin-Cuesta M, Heaton R, Hargreaves I, Fracchia L, et al. Production of Mannosylerythritol Lipids (MELs) to be Used as Antimicrobial Agents Against S. aureus ATCC 6538. Curr Microbiol. 2020;77:1373–80.
Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol. 2015;32:720–6.
Boxley CJ, Hogan DE, Stolley RM, Maier RM. Synthetic approaches to production of rhamnolipid and related glycolipids. In: Biosurfactants. Elsevier, 2023, pp 251–63.
Mukherji R, Prabhune A. Novel glycolipids synthesized using plant essential oils and their application in quorum sensing inhibition and as antibiofilm agents. Sci World J. 2014;2014:1–7.
Maiti K, Syal K, Chatterji D, Jayaraman N. Synthetic arabinomannan heptasaccharide glycolipids inhibit biofilm growth and augment isoniazid effects in Mycobacterium smegmatis. ChemBioChem. 2017;18:1959–70.
Naresh K, Bharati BK, Avaji PG, Jayaraman N, Chatterji D. Synthetic arabinomannan glycolipids and their effects on growth and motility of the Mycobacterium smegmatis. Org Biomol Chem. 2010;8:592–9.
Perona A, Hoyos P, Ticona LA, García-Oliva C, Merchán A, Hernáiz MJ. Enzymatic synthesis and biological evaluation of glycolipids as potential antibacterial, antibiofilm and antiquorum sensing agents. Catal Today. 2024;433:114623.
Thangarasu AK, Sambyal S, Kumar HMS, Lankalapalli RS. Design, synthesis, and preliminary immunopotentiating activity of new analogues of nojirimycin. Carbohydr Res. 2022;511:108479.
Natori T, Koezuka Y, Higa T. Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 1993;34:5591–2.
Banchet-Cadeddu A, Hénon E, Dauchez M, Renault J-H, Monneaux F, Haudrechy A. The stimulating adventure of KRN 7000. Org Biomol Chem. 2011;9:3080.
Vieira ER, da Xisto MIDS, Pele MA, Alviano DS, Alviano CS, Barreto-Bergter E, et al. Monohexosylceramides from rhizopus species isolated from Brazilian caatinga: chemical characterization and evaluation of their antibiofilm and antibacterial activities. Molecules. 2018;23:1331.
Haas R, Gutman J, Wardrip NC, Kawahara K, Uhl W, Herzberg M, et al. Glycosphingolipids enhance bacterial attachment and fouling of nanofiltration membranes. Environ Sci Technol Lett. 2015;2:43–47.
De Gregorio E, Esposito A, Vollaro A, De Fenza M, D’Alonzo D, Migliaccio A, et al. N-Nonyloxypentyl-l-Deoxynojirimycin Inhibits growth, biofilm formation and virulence factors expression of Staphylococcus aureus. Antibiotics. 2020;9:362.
Kozień Ł, Gallienne E, Martin O, Front S, Strus M, Heczko P. PDIA, an iminosugar compound with a wide biofilm inhibitory spectrum covering both gram-positive and gram-negative human bacterial pathogens. Microorganisms. 2022;10:1222.
Cukkemane N, Bikker FJ, Nazmi K, Brand HS, Sotres J, Lindh L, et al. Anti‐adherence and bactericidal activity of sphingolipids against Streptococcus mutans. Eur J Oral Sci. 2015;123:221–7.
Tan LKK, Eccersley LRJ, Sriskandan S. Current views of haemolytic streptococcal pathogenesis. Curr Opin Infect Dis. 2014;27:155–64.
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al. Disease manifestations and pathogenic mechanisms of Group A streptococcus. Clin Microbiol Rev. 2014;27:264–301.
Schaffer JN, Pearson MM. Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr 2015; 3. https://doi.org/10.1128/microbiolspec.UTI-0017-2013.
Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of proteus mirabilis infection. EcoSal Plus 2018; 8. https://doi.org/10.1128/ecosalplus.esp-0009-2017.
Mobley HL, Warren JW. Urease-positive bacteriuria and obstruction of long-term urinary catheters. J Clin Microbiol. 1987;25:2216–7.
Nucleo E, Fugazza G, Migliavacca R, Spalla M, Comelli M, Pagani L, et al. Differences in biofilm formation and aggregative adherence between β-lactam susceptible and β-lactamases producing P. mirabilis clinical isolates. New Microbiol. 2010;33:37–45.
Wasfi R, Hamed SM, Amer MA, Fahmy LI. Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front Cell Infect Microbiol 2020; 10. https://doi.org/10.3389/fcimb.2020.00414.
Pala M, Castelein MG, Dewaele C, Roelants SLKW, Soetaert WK, Stevens CV. Tuning the antimicrobial activity of microbial glycolipid biosurfactants through chemical modification. Front Bioeng Biotechnol 2024; 12. https://doi.org/10.3389/fbioe.2024.1347185.
Jiang Y, Geng M, Bai L. Targeting biofilms therapy: current research strategies and development hurdles. Microorganisms. 2020;8:1222.
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Agents that inhibit bacterial biofilm formation. Future Med Chem. 2015;7:647–71.