Select Page


  • Purdy-Gibson ME, France M, Hundley TC, Eid N, Remold SK. Pseudomonas aeruginosa in CF and non-CF homes is found predominantly in drains. J Cyst Fibros. 2015;14:341–6.

    Article 
    PubMed 

    Google Scholar
     

  • WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022–2020 data: Copenhagen: WHO Regional Office for Europe; 2022.

  • Tadjrobehkar O, Kamali A. Evaluation of Antibiotic Resistance Pattern and Extended Spectrum Beta-lactamases in Pseudomonas aeruginosaIsolates Obtained from Clinical Samples by Phenotypic and Genotypic Methods in Zabol, Iran. J Kerman Univ Med Sci. 2022;29:529–35.


    Google Scholar
     

  • Reig S, Le Gouellec A, Bleves S. What is new in the anti-Pseudomonas aeruginosa clinical development pipeline since the 2017 WHO alert? Front Cell Infect Microbiol. 2022;12:909731.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa–an emerging challenge. Emerg Microbes Infect. 2022;11:811–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol. 2021;12:614058.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32:https://doi.org/10.1128/cmr.00031-19.

  • Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob Agents Chemother. 2018;62:e01968–17.

  • Vasoo S, Cunningham SA, Cole NC, Kohner PC, Menon SR, Krause KM, et al. In vitro activities of ceftazidime-avibactam, aztreonam-avibactam, and a panel of older and contemporary antimicrobial agents against carbapenemase-producing Gram-negative bacilli. Antimicrob Agents Chemother. 2015;59:7842–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown AC, Malik S, Huang J, Bhatnagar A, Balbuena R, Reese N, et al. 484. Metallo-β-Lactamase-Positive carbapenem-resistant enterobacteriaceae and pseudomonas aeruginosa in the antibiotic resistance laboratory network, 2017–2018. Open Forum Infect Dis. 2019;6:S237–S.

    Article 
    PubMed Central 

    Google Scholar
     

  • Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC, Tamma PD. Carbapenemase detection among carbapenem-resistant glucose-nonfermenting Gram-negative bacilli. J Clin Microbiol. 2017;55:2858–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahin M, Ahmadi A. Molecular characterization of NDM-1-producing Pseudomonas aeruginosa isolates from hospitalized patients in Iran. Ann Clin Microbiol Antimicrobials. 2021;20:76.

    Article 

    Google Scholar
     

  • Rahimi E, Asgari A, Azimi T, Soleiman-Meigooni S. Molecular detection of carbapenemases and extended-spectrum β-lactamases-encoding genes in clinical isolates of Pseudomonas aeruginosa in Iran. Jundishapur J Microbiol. 2021;14:e115977.

    Article 

    Google Scholar
     

  • Gill CM, Asempa TE, Nicolau DP. Development and application of a pragmatic algorithm to guide definitive carbapenemase testing to identify carbapenemase-producing Pseudomonas aeruginosa. Antibiotics. 2020;9:738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CLSI. Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI supplement M100. United States: Clinical and Laboratory Standards Institute; 2023.

  • Lasko MJ, Gill CM, Asempa TE, Nicolau DP. EDTA-modified carbapenem inactivation method (eCIM) for detecting IMP Metallo-β-lactamase–producing Pseudomonas aeruginosa: an assessment of increasing EDTA concentrations. BMC Microbiol. 2020;20:220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jing X, Zhou H, Min X, Zhang X, Yang Q, Du S, et al. The simplified carbapenem inactivation method (sCIM) for simple and accurate detection of carbapenemase-producing Gram-negative bacilli. Front Microbiol. 2018;9:2391.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article 
    PubMed 

    Google Scholar
     

  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.

    Article 
    PubMed 

    Google Scholar
     

  • Khosravi AD, Mihani F. Detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2008;60:125–8.

    Article 
    PubMed 

    Google Scholar
     

  • Simner PJ, Johnson JK, Brasso WB, Anderson K, Lonsway DR, Pierce VM, et al. Multicenter evaluation of the modified carbapenem inactivation method and the carba np for detection of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii. J Clin Microbiol. 2018;56:e01369–17.

  • Zhang S, Mi P, Wang J, Li P, Luo K, Liu S, et al. The optimized carbapenem inactivation method for objective and accurate detection of carbapenemase-producing Acinetobacter baumannii. Front Microbiol. 2023;14:1185450.

  • Khuntayaporn P, Thirapanmethee K, Kanathum P, Chitsombat K, Chomnawang MT. Comparative study of phenotypic-based detection assays for carbapenemase-producing Acinetobacter baumannii with a proposed algorithm in resource-limited settings. PLoS ONE. 2021;16:e0259686.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad FS, Mojtaba S, Leili S, Fahimeh G, Hamid S, Fereshteh S. Emerge of NDM-1-producing multidrug-resistant Pseudomonas aeruginosa and co-harboring of Carbapenemase genes in South of Iran. Iran J Public Health. 2020;49:959.

  • Seyedi M, Yousefi F, Naeimi B, Tajbakhsh S. Phenotypic and genotypic investigation of metallo-β-lactamases in Pseudomonas aeruginosa clinical isolates in Bushehr, Iran. Iran J Basic Med Sci. 2022;25:1196–200.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mokhtari M, Mojtahedi A, Mahdieh N, Jafari A, Atrkar Roushan Z, Arya MJ. Evaluation of the Relative frequency of carbapenemase genes by phenotypic and genotypic methods in Pseudomonas aeruginosa isolates from patients with open heart surgery in Iran. Infect Epidemiol Microbiol. 2023;9:55–62.

    Article 

    Google Scholar
     

  • Vural E, Delialioğlu N, Tezcan Ulger S, Emekdas G, Serin MS. Phenotypic and molecular detection of the metallo-beta-lactamases in carbapenem-resistant pseudomonas aeruginosa isolates from clinical samples. Jundishapur J Microbiol. 2020;13:e90034.

    Article 

    Google Scholar
     

  • Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Phenotypic and molecular characterization of extended spectrum- and metallo- beta lactamase producing Pseudomonas aeruginosa clinical isolates from Egypt. Infection. 2024;52:2399–2414.

  • Wang W, Wang X. Prevalence of metallo-β-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. J Lab Med. 2020;44:197–203.

    Article 

    Google Scholar
     

  • Ghasemian S, Karami-Zarandi M, Heidari H, Khoshnood S, Kouhsari E, Ghafourian S, et al. Molecular characterizations of antibiotic resistance, biofilm formation, and virulence determinants of Pseudomonas aeruginosa isolated from burn wound infection. J Clin Lab Anal. 2023;37:e24850.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes. 2020;13:380.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenover FC, Dela Cruz CM, Dewell S, Le VM, Tickler IA. Does the presence of multiple β-lactamases in Gram-negative bacilli impact the results of antimicrobial susceptibility tests and extended-spectrum β-lactamase and carbapenemase confirmation methods? J Glob Antimicrob Resist. 2020;23:87–93.

    Article 
    PubMed 

    Google Scholar
     

  • Kumudunie WGM, Wijesooriya LI, Wijayasinghe YS. Comparison of four low-cost carbapenemase detection tests and a proposal of an algorithm for early detection of carbapenemase-producing Enterobacteriaceae in resource-limited settings. PLoS One. 2021;16:e0245290.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gajdács M, Kárpáti K, Stájer A, Zanetti S, Donadu MG. Insights on carbapenem-resistant Pseudomonas aeruginosa: phenotypic characterization of relevant isolates. Acta Biol Szeged. 2021;65:105–12.

    Article 

    Google Scholar
     

  • Ferjani S, Maamar E, Ferjani A, Kanzari L, Boubaker IBB. Evaluation of three carbapenemase-phenotypic detection methods and emergence of diverse VIM and GES variants among Pseudomonas aeruginosa isolates in Tunisia. Antibiotics. 2022;11:858.

  • Gill CM, Aktaþ E, Alfouzan W, Bourassa L, Brink A, Burnham CD, et al. Multicenter, prospective validation of a phenotypic algorithm to guide carbapenemase testing in carbapenem-resistant Pseudomonas aeruginosa using the ERACE-PA global surveillance program. Open Forum Infect Dis. 2022;9:ofab617.

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Christmas Pop-up