Purdy-Gibson ME, France M, Hundley TC, Eid N, Remold SK. Pseudomonas aeruginosa in CF and non-CF homes is found predominantly in drains. J Cyst Fibros. 2015;14:341–6.
WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022–2020 data: Copenhagen: WHO Regional Office for Europe; 2022.
Tadjrobehkar O, Kamali A. Evaluation of Antibiotic Resistance Pattern and Extended Spectrum Beta-lactamases in Pseudomonas aeruginosaIsolates Obtained from Clinical Samples by Phenotypic and Genotypic Methods in Zabol, Iran. J Kerman Univ Med Sci. 2022;29:529–35.
Reig S, Le Gouellec A, Bleves S. What is new in the anti-Pseudomonas aeruginosa clinical development pipeline since the 2017 WHO alert? Front Cell Infect Microbiol. 2022;12:909731.
Tenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa–an emerging challenge. Emerg Microbes Infect. 2022;11:811–4.
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol. 2021;12:614058.
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32:https://doi.org/10.1128/cmr.00031-19.
Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob Agents Chemother. 2018;62:e01968–17.
Vasoo S, Cunningham SA, Cole NC, Kohner PC, Menon SR, Krause KM, et al. In vitro activities of ceftazidime-avibactam, aztreonam-avibactam, and a panel of older and contemporary antimicrobial agents against carbapenemase-producing Gram-negative bacilli. Antimicrob Agents Chemother. 2015;59:7842–6.
Brown AC, Malik S, Huang J, Bhatnagar A, Balbuena R, Reese N, et al. 484. Metallo-β-Lactamase-Positive carbapenem-resistant enterobacteriaceae and pseudomonas aeruginosa in the antibiotic resistance laboratory network, 2017–2018. Open Forum Infect Dis. 2019;6:S237–S.
Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC, Tamma PD. Carbapenemase detection among carbapenem-resistant glucose-nonfermenting Gram-negative bacilli. J Clin Microbiol. 2017;55:2858–64.
Shahin M, Ahmadi A. Molecular characterization of NDM-1-producing Pseudomonas aeruginosa isolates from hospitalized patients in Iran. Ann Clin Microbiol Antimicrobials. 2021;20:76.
Rahimi E, Asgari A, Azimi T, Soleiman-Meigooni S. Molecular detection of carbapenemases and extended-spectrum β-lactamases-encoding genes in clinical isolates of Pseudomonas aeruginosa in Iran. Jundishapur J Microbiol. 2021;14:e115977.
Gill CM, Asempa TE, Nicolau DP. Development and application of a pragmatic algorithm to guide definitive carbapenemase testing to identify carbapenemase-producing Pseudomonas aeruginosa. Antibiotics. 2020;9:738.
CLSI. Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI supplement M100. United States: Clinical and Laboratory Standards Institute; 2023.
Lasko MJ, Gill CM, Asempa TE, Nicolau DP. EDTA-modified carbapenem inactivation method (eCIM) for detecting IMP Metallo-β-lactamase–producing Pseudomonas aeruginosa: an assessment of increasing EDTA concentrations. BMC Microbiol. 2020;20:220.
Jing X, Zhou H, Min X, Zhang X, Yang Q, Du S, et al. The simplified carbapenem inactivation method (sCIM) for simple and accurate detection of carbapenemase-producing Gram-negative bacilli. Front Microbiol. 2018;9:2391.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.
Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.
Khosravi AD, Mihani F. Detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2008;60:125–8.
Simner PJ, Johnson JK, Brasso WB, Anderson K, Lonsway DR, Pierce VM, et al. Multicenter evaluation of the modified carbapenem inactivation method and the carba np for detection of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii. J Clin Microbiol. 2018;56:e01369–17.
Zhang S, Mi P, Wang J, Li P, Luo K, Liu S, et al. The optimized carbapenem inactivation method for objective and accurate detection of carbapenemase-producing Acinetobacter baumannii. Front Microbiol. 2023;14:1185450.
Khuntayaporn P, Thirapanmethee K, Kanathum P, Chitsombat K, Chomnawang MT. Comparative study of phenotypic-based detection assays for carbapenemase-producing Acinetobacter baumannii with a proposed algorithm in resource-limited settings. PLoS ONE. 2021;16:e0259686.
Ahmad FS, Mojtaba S, Leili S, Fahimeh G, Hamid S, Fereshteh S. Emerge of NDM-1-producing multidrug-resistant Pseudomonas aeruginosa and co-harboring of Carbapenemase genes in South of Iran. Iran J Public Health. 2020;49:959.
Seyedi M, Yousefi F, Naeimi B, Tajbakhsh S. Phenotypic and genotypic investigation of metallo-β-lactamases in Pseudomonas aeruginosa clinical isolates in Bushehr, Iran. Iran J Basic Med Sci. 2022;25:1196–200.
Mokhtari M, Mojtahedi A, Mahdieh N, Jafari A, Atrkar Roushan Z, Arya MJ. Evaluation of the Relative frequency of carbapenemase genes by phenotypic and genotypic methods in Pseudomonas aeruginosa isolates from patients with open heart surgery in Iran. Infect Epidemiol Microbiol. 2023;9:55–62.
Vural E, Delialioğlu N, Tezcan Ulger S, Emekdas G, Serin MS. Phenotypic and molecular detection of the metallo-beta-lactamases in carbapenem-resistant pseudomonas aeruginosa isolates from clinical samples. Jundishapur J Microbiol. 2020;13:e90034.
Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Phenotypic and molecular characterization of extended spectrum- and metallo- beta lactamase producing Pseudomonas aeruginosa clinical isolates from Egypt. Infection. 2024;52:2399–2414.
Wang W, Wang X. Prevalence of metallo-β-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. J Lab Med. 2020;44:197–203.
Ghasemian S, Karami-Zarandi M, Heidari H, Khoshnood S, Kouhsari E, Ghafourian S, et al. Molecular characterizations of antibiotic resistance, biofilm formation, and virulence determinants of Pseudomonas aeruginosa isolated from burn wound infection. J Clin Lab Anal. 2023;37:e24850.
Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes. 2020;13:380.
Tenover FC, Dela Cruz CM, Dewell S, Le VM, Tickler IA. Does the presence of multiple β-lactamases in Gram-negative bacilli impact the results of antimicrobial susceptibility tests and extended-spectrum β-lactamase and carbapenemase confirmation methods? J Glob Antimicrob Resist. 2020;23:87–93.
Kumudunie WGM, Wijesooriya LI, Wijayasinghe YS. Comparison of four low-cost carbapenemase detection tests and a proposal of an algorithm for early detection of carbapenemase-producing Enterobacteriaceae in resource-limited settings. PLoS One. 2021;16:e0245290.
Gajdács M, Kárpáti K, Stájer A, Zanetti S, Donadu MG. Insights on carbapenem-resistant Pseudomonas aeruginosa: phenotypic characterization of relevant isolates. Acta Biol Szeged. 2021;65:105–12.
Ferjani S, Maamar E, Ferjani A, Kanzari L, Boubaker IBB. Evaluation of three carbapenemase-phenotypic detection methods and emergence of diverse VIM and GES variants among Pseudomonas aeruginosa isolates in Tunisia. Antibiotics. 2022;11:858.
Gill CM, Aktaþ E, Alfouzan W, Bourassa L, Brink A, Burnham CD, et al. Multicenter, prospective validation of a phenotypic algorithm to guide carbapenemase testing in carbapenem-resistant Pseudomonas aeruginosa using the ERACE-PA global surveillance program. Open Forum Infect Dis. 2022;9:ofab617.