Select Page


  • Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci. 2020;27:74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, et al. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol. 2020;11:303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim BG, Jhun BW, Kim H, Kwon OJ. Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severity. Sci Rep. 2022;12:1970.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis. 2020;71:905–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor JL, Palmer SM. Mycobacterium abscessus chest wall and pulmonary infection in a cystic fibrosis lung transplant recipient. J Heart Lung Transpl. 2006;25:985–8.

    Article 

    Google Scholar
     

  • Huh HJ, Kim SY, Shim HJ, Kim DH, Yoo IY, Kang OK et al. GenoType NTM-DR performance evaluation for identification of mycobacterium avium complex and mycobacterium abscessus and determination of clarithromycin and amikacin resistance. J Clin Microbiol. 2019;57:e00516-19.

  • Ruth MM, Sangen JJN, Remmers K, Pennings LJ, Svensson E, Aarnoutse RE, et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother. 2019;74:935–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L. Effects of herbicide on non-target microorganisms: towards a new class of biomarkers? Sci Total Environ. 2019;684:314–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sohn H, Lee KS, Ko YK, Ryu JW, Woo JC, Koo DW, et al. In vitro and ex vivo activity of new derivatives of acetohydroxyacid synthase inhibitors against Mycobacterium tuberculosis and non-tuberculous mycobacteria. Int J Antimicrob Agents. 2008;31:567–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi KJ, Yu YG, Hahn HG, Choi JD, Yoon MY. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. FEBS Lett. 2005;579:4903–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gokhale K, Tilak B. Mechanisms of bacterial acetohydroxyacid synthase (AHAS) and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis. Curr Drug Targets. 2015;16:689–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saxena S, Spaink HP, Forn-Cuni G. Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology (Basel). 2021;10:96.

  • Song CH, Kim HJ, Lim HJ et al. Novel compound and pharmaceutical composition for treating Mycobacterium tuberculosis ir nontuberculous Mycobacterium infection comprising the same. KR 20230106356. 2023.

  • Garcia MD, Chua SMH, Low YS, Lee YT, Agnew-Francis K, Wang JG, et al. Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Proc Natl Acad Sci USA. 2018;115:E9649–E9658.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Zhang Y et al. Preparation method of diclosulam. CN 106905323. 2017.

  • Institute CaLS. M62: Performance Standards for Susceptibility Testing of Mycobacteria,Nocardia spp., and Other Aerobic Actinomycetes. CLSI: Wayne, PA, 2018.

  • Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020;7:105–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son SH, Lee J, Cho SN, Choi JA, Kim J, Nguyen TD, et al. Herp regulates intracellular survival of Mycobacterium tuberculosisH37Ra in macrophages by regulating reactive oxygen species-mediated autophagy. mBio. 2023;14:e0153523.

    Article 
    PubMed 

    Google Scholar
     

  • Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front Microbiol. 2015;6:165.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonapace CR, Bosso JA, Friedrich LV, White RL. Comparison of methods of interpretation of checkerboard synergy testing. Diagn Microbiol Infect Dis. 2002;44:363–6.

    Article 
    PubMed 

    Google Scholar
     

  • Konate K, Mavoungou JF, Lepengue AN, Aworet-Samseny RR, Hilou A, Souza A, et al. Antibacterial activity against beta- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann Clin Microbiol Antimicrob. 2012;11:18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eliopoulos, GM, RC Moellering. Antibiotics combinations, p.432-492. In V. Lorian (ed.), Antibiotics in laboratory medicine, 3rd ed. The Williams & Wilkins Co., Baltomore, MD. 1991.

  • Zhao J, Zhang Z, Xue Y, Wang G, Cheng Y, Pan Y, et al. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I : C) promote melanoma regression. Theranostics. 2018;8:6307–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukuda H, Ohashi Y. A guideline for reporting results of statistical analysis in Japanese Journal of Clinical Oncology. Jpn J Clin Oncol. 1997;27:121–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 2016;45:123–34.

    Article 
    PubMed 

    Google Scholar
     

  • Lee YT, Cui CJ, Chow EW, Pue N, Lonhienne T, Wang JG, et al. Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase. J Med Chem. 2013;56:210–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan L, Jiang Y, Liu Z, Liu XH, Liu Z, Wang G, et al. Synthesis and evaluation of novel monosubstituted sulfonylurea derivatives as antituberculosis agents. Eur J Med Chem. 2012;50:18–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreisberg JF, Ong NT, Krishna A, Joseph TL, Wang J, Ong C, et al. Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. Antimicrob Agents Chemother. 2013;57:1513–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng FF, Shang MH, Wei W, Yu ZW, Liu JL, Li ZM et al. Novel sulfonylurea derivatives as potential antimicrobial agents: chemical synthesis, biological evaluation, and computational study. Antibiotics (Basel). 2023;12:323.

  • Ovung A, Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev. 2021;13:259–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chio LC, Bolyard LA, Nasr M, Queener SF. Identification of a class of sulfonamides highly active against dihydropteroate synthase form Toxoplasma gondii, Pneumocystis carinii, and Mycobacterium avium. Antimicrob Agents Chemother. 1996;40:727–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFarland MM, Zach SJ, Wang X, Potluri LP, Neville AJ, Vennerstrom JL, et al. Review of experimental compounds demonstrating anti-toxoplasma activity. Antimicrob Agents Chemother. 2016;60:7017–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Christmas Pop-up