Kristich CJ, Rice LB, Arias CA. Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, MA; 2014.
Ahmed MO, Baptiste KE. Vancomycin-resistant Enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 2018;24:590–606.
Tomita H, Nomura T, Kurushima J, Tanimoto K. VRE: vancomycin resistant enterococci. J Japan Soc Clin Microbiol. 2014;24:180–94.
Huang X, Kong F, Zhou S, Huang D, Zheng J, Zhu W. Streptomyces tirandamycinicus sp. nov., a novel marine sponge-derived actinobacterium with antibacterial potential against Streptococcus agalactiae. Front Microbiol. 2019;10:482.
Clinical and Laboratory Standards Institute (CLSI): Reference methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard CLSI document M07-A11. 11th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
Uchida R, Iwatsuki M, Kim YP, Ohte S, Ōmura S, Tomoda H. Nosokomycins, new antibiotics, discovered in an in vivo-mimic infection model using silkworm larvae. I. Fermentation, isolation and biological properties. J Antibiot. 2010;63:151–5.
Uchida R, Iwatsuki M, Kim YP, Ōmura S, Tomoda H. Nosokomycins, new antibiotics, discovered in an in vivo-mimic infection model using silkworm larvae. II. Structure elucidation. J Antibiot. 2010;63:157–63.
Uchida R, Hanaki H, Matsui H, Hamamoto H, Sekimizu K, Iwatsuki M, Kim YP, Tomoda H. In vitro and in vivo anti-MRSA activities of nosokomycins. Drug Discov Ther. 2014;8:249–54.
Hamamoto H, Urai M, Ishii K, Yasukawa J, Paudel A, Murai M, et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol. 2015;11:127–33.
Uchida R, Namiguchi S, Ishijima H, Tomoda H. Therapeutic effects of three trichothecenes in the silkworm infection assay with Candida albicans. Drug Discov Ther. 2016;20:44–48.
Tominaga T, Uchida R, Koyama N, Tomoda H. Anti-Rhizopus activity of tanzawaic acids produced by the hot spring-derived fungus Penicillium sp. BF-0005. J Antibiot. 2018;71:626–32.
Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura K, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;70:685–90.
Hosoda K, Koyama N, Hamamoto H, Yagi A, Uchida R, Kanamoto A, Tomoda H. Evaluation of anti-mycobacterial compounds in a silkworm infection model with Mycobacteroides abscessus. Molecules. 2020;25:4971.
Yagi A, Yamazaki H, Terahara T, Yang T, Hamamoto H, Imada C, Tomoda H, Uchida R. Development of an in vivo-mimic silkworm infection model with Mycobacterium avium complex. Drug Discov Ther. 2021;14:287–95.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
Hamamoto H, Tonoike A, Narushima K, Horie R, Sekimizu K. Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol. 2009;149:334–9.
Meyer CE. Tirandamycin, a new antibiotic isolation and characterization. J Antibiot. 1971;24:558–60.
Hagenmaier H, Jaschke KH, Santo L, Scheer M, Zähner H. Metabiolic products of microorganisms. Tirandamycin B. Arch Microbiol. 1976;109:65–74.
Yu Z, Vodanovic-Jankovic S, Ledeboer N, Huang SX, Rajski SR, Kron M, Shen B. Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase. Org Lett. 2011;13:2034–7.
Rateb ME, Yu Z, Yan Y, Yang D, Huang T, Vodanovic-Jankovic S, Kron MA, Shen B. Medium optimization of Streptomyces sp. 17944 for tirandamycin B production and isolation and structural elucidation of tirandamycins H, I and J. J Antibiot. 2014;67:127–32.
Duchamp DJ, Branfman AR, Button AC, Rinehart KL Jr. X-ray structure of tirandamycic acid p-bromophenacyl ester. Complete stereochemical assignments of tirandamycin and streptolydigin. J Am Chem Soc. 1973;95:4077–8.
Carlson JC, Li S, Burr DA, Sherman DH. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod. 2009;72:2076–9.
Carlson JC, Li S, Gunatilleke SS, Anzai Y, Burr DA, Podust LM, Sherman DH. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem. 2011;3:628–33.
Mo X, Huang H, Ma J, Wang Z, Wang B, Zhang S, Zhang C, Ju J. Characterization of Trdl as a 10-hydroxy dehydrogenase and generation of new analogues from a tirandamycin biosynthetic pathway. Org Lett. 2011;13:2212–5.
Mo X, Wang Z, Wang B, Ma J, Huang H, Tian X, Zhang S, Zhang C, Ju J. Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun. 2011;406:341–7.
Mo X, Ma J, Huang H, Wang B, Song Y, Zhang S, Zhang C, Ju J. Δ11, 12 Double bond formation in tirandamycin biosynthesis is atypically catalyzed by TrdE, a glycoside hydrolase family enzyme. J Am Chem Soc. 2012;134:2844–7.
Cong Z, Huang X, Liu Y, Liu Y, Wang P, Liao S, Yang B, Zhou X, Huang D, Wang J. Cytotoxic anthracycline and antibacterial tirandamycin analogues from a marine-derived Streptomyces sp. SCSIO 41399. J Antibiot. 2019;72:45–9.
Zhang X, Li Z, Du L, Chlipala GE, Lopez PC, Zhang W, Sherman DH, Li S. Identification of an unexpected shunt pathway product provides new insights into tirandamycin biosynthesis. Tetrahedron Lett. 2016;57:5919–23.
Espinoza RV, Haatveit KC, Grossman SW, Tan JY, McGlade CA, Khatri Y, Newmister SA, Schmidt JJ, Garcia-Borràs M, Montgomery J, Houk KN, Sherman DH. Engineering P450 TamI as an iterative biocatalyst for selective late-stage C-H functionalization and epoxidation of tirandamycin antibiotics. ACS Catal. 2021;11:8304–16.
Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH. Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. Chembiochem. 2010;11:564–72.
Reusser F. Tirandamycin: inhibition of ribonucleic acid polymerase. Infect Immun. 1970;2:77–81.