Select Page


  • Kristich CJ, Rice LB, Arias CA. Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, MA; 2014.

  • Ahmed MO, Baptiste KE. Vancomycin-resistant Enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 2018;24:590–606.

    Article 
    PubMed 

    Google Scholar
     

  • Tomita H, Nomura T, Kurushima J, Tanimoto K. VRE: vancomycin resistant enterococci. J Japan Soc Clin Microbiol. 2014;24:180–94.


    Google Scholar
     

  • Huang X, Kong F, Zhou S, Huang D, Zheng J, Zhu W. Streptomyces tirandamycinicus sp. nov., a novel marine sponge-derived actinobacterium with antibacterial potential against Streptococcus agalactiae. Front Microbiol. 2019;10:482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clinical and Laboratory Standards Institute (CLSI): Reference methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard CLSI document M07-A11. 11th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.

  • Uchida R, Iwatsuki M, Kim YP, Ohte S, Ōmura S, Tomoda H. Nosokomycins, new antibiotics, discovered in an in vivo-mimic infection model using silkworm larvae. I. Fermentation, isolation and biological properties. J Antibiot. 2010;63:151–5.

    Article 

    Google Scholar
     

  • Uchida R, Iwatsuki M, Kim YP, Ōmura S, Tomoda H. Nosokomycins, new antibiotics, discovered in an in vivo-mimic infection model using silkworm larvae. II. Structure elucidation. J Antibiot. 2010;63:157–63.

    Article 

    Google Scholar
     

  • Uchida R, Hanaki H, Matsui H, Hamamoto H, Sekimizu K, Iwatsuki M, Kim YP, Tomoda H. In vitro and in vivo anti-MRSA activities of nosokomycins. Drug Discov Ther. 2014;8:249–54.

    Article 
    PubMed 

    Google Scholar
     

  • Hamamoto H, Urai M, Ishii K, Yasukawa J, Paudel A, Murai M, et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol. 2015;11:127–33.

    Article 
    PubMed 

    Google Scholar
     

  • Uchida R, Namiguchi S, Ishijima H, Tomoda H. Therapeutic effects of three trichothecenes in the silkworm infection assay with Candida albicans. Drug Discov Ther. 2016;20:44–48.

    Article 

    Google Scholar
     

  • Tominaga T, Uchida R, Koyama N, Tomoda H. Anti-Rhizopus activity of tanzawaic acids produced by the hot spring-derived fungus Penicillium sp. BF-0005. J Antibiot. 2018;71:626–32.

    Article 

    Google Scholar
     

  • Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura K, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;70:685–90.

    Article 

    Google Scholar
     

  • Hosoda K, Koyama N, Hamamoto H, Yagi A, Uchida R, Kanamoto A, Tomoda H. Evaluation of anti-mycobacterial compounds in a silkworm infection model with Mycobacteroides abscessus. Molecules. 2020;25:4971.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yagi A, Yamazaki H, Terahara T, Yang T, Hamamoto H, Imada C, Tomoda H, Uchida R. Development of an in vivo-mimic silkworm infection model with Mycobacterium avium complex. Drug Discov Ther. 2021;14:287–95.

    Article 
    PubMed 

    Google Scholar
     

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article 
    PubMed 

    Google Scholar
     

  • Hamamoto H, Tonoike A, Narushima K, Horie R, Sekimizu K. Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol. 2009;149:334–9.

    Article 
    PubMed 

    Google Scholar
     

  • Meyer CE. Tirandamycin, a new antibiotic isolation and characterization. J Antibiot. 1971;24:558–60.

    Article 

    Google Scholar
     

  • Hagenmaier H, Jaschke KH, Santo L, Scheer M, Zähner H. Metabiolic products of microorganisms. Tirandamycin B. Arch Microbiol. 1976;109:65–74.

    Article 
    PubMed 

    Google Scholar
     

  • Yu Z, Vodanovic-Jankovic S, Ledeboer N, Huang SX, Rajski SR, Kron M, Shen B. Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase. Org Lett. 2011;13:2034–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rateb ME, Yu Z, Yan Y, Yang D, Huang T, Vodanovic-Jankovic S, Kron MA, Shen B. Medium optimization of Streptomyces sp. 17944 for tirandamycin B production and isolation and structural elucidation of tirandamycins H, I and J. J Antibiot. 2014;67:127–32.

    Article 

    Google Scholar
     

  • Duchamp DJ, Branfman AR, Button AC, Rinehart KL Jr. X-ray structure of tirandamycic acid p-bromophenacyl ester. Complete stereochemical assignments of tirandamycin and streptolydigin. J Am Chem Soc. 1973;95:4077–8.

    Article 
    PubMed 

    Google Scholar
     

  • Carlson JC, Li S, Burr DA, Sherman DH. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod. 2009;72:2076–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson JC, Li S, Gunatilleke SS, Anzai Y, Burr DA, Podust LM, Sherman DH. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem. 2011;3:628–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo X, Huang H, Ma J, Wang Z, Wang B, Zhang S, Zhang C, Ju J. Characterization of Trdl as a 10-hydroxy dehydrogenase and generation of new analogues from a tirandamycin biosynthetic pathway. Org Lett. 2011;13:2212–5.

    Article 
    PubMed 

    Google Scholar
     

  • Mo X, Wang Z, Wang B, Ma J, Huang H, Tian X, Zhang S, Zhang C, Ju J. Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun. 2011;406:341–7.

    Article 
    PubMed 

    Google Scholar
     

  • Mo X, Ma J, Huang H, Wang B, Song Y, Zhang S, Zhang C, Ju J. Δ11, 12 Double bond formation in tirandamycin biosynthesis is atypically catalyzed by TrdE, a glycoside hydrolase family enzyme. J Am Chem Soc. 2012;134:2844–7.

    Article 
    PubMed 

    Google Scholar
     

  • Cong Z, Huang X, Liu Y, Liu Y, Wang P, Liao S, Yang B, Zhou X, Huang D, Wang J. Cytotoxic anthracycline and antibacterial tirandamycin analogues from a marine-derived Streptomyces sp. SCSIO 41399. J Antibiot. 2019;72:45–9.

    Article 

    Google Scholar
     

  • Zhang X, Li Z, Du L, Chlipala GE, Lopez PC, Zhang W, Sherman DH, Li S. Identification of an unexpected shunt pathway product provides new insights into tirandamycin biosynthesis. Tetrahedron Lett. 2016;57:5919–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espinoza RV, Haatveit KC, Grossman SW, Tan JY, McGlade CA, Khatri Y, Newmister SA, Schmidt JJ, Garcia-Borràs M, Montgomery J, Houk KN, Sherman DH. Engineering P450 TamI as an iterative biocatalyst for selective late-stage C-H functionalization and epoxidation of tirandamycin antibiotics. ACS Catal. 2021;11:8304–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH. Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. Chembiochem. 2010;11:564–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reusser F. Tirandamycin: inhibition of ribonucleic acid polymerase. Infect Immun. 1970;2:77–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Christmas Pop-up