Select Page


  • Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M.-T., Tang, X.-H., Cai, H., Zhang, A.-H. & Guo, Z.-Y. Editorial: Molecular mechanism and therapeutic approach to renal interstitial fibrosis. Front. Med. 9, 879927 (2022).

    Article 

    Google Scholar
     

  • Martínez-Klimova, E., Aparicio-Trejo, O. E., Tapia, E. & Pedraza-Chaverri, J. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9, 141 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco-Acevedo, A., Echavarria, R. & Melo, Z. Sex differences in renal function: Participation of gonadal hormones and prolactin. Endocrines 2, 185–202 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peng, Y. et al. Testosterone induces renal tubular epithelial cell death through the HIF-1α/BNIP3 pathway. J. Transl. Med. 17, 62 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sultanova, R. F., Schibalski, R., Yankelevich, I. A., Stadler, K. & Ilatovskaya, D. V. Sex differences in renal mitochondrial function: A hormone-gous opportunity for research. Am. J. Physiol. Renal Physiol. 319, F1117–F1124 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banaei, S. & Rezagholizadeh, L. The role of hormones in renal disease and ischemia-reperfusion injury. Iran. J. Basic Med. Sci. 22, 469–476 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bumke-Vogt, C. et al. Expression of the progesterone receptor and progesterone- metabolising enzymes in the female and male human kidney. J. Endocrinol. 175, 349–364 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spencer, T. E. & Bazer, F. W. Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front. Biosci. 7, d1879–d1898 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheibl, P. & Zerbe, H. Effect of progesterone on the immune system in consideration of bovine placental retention. Dtsch. Tierarztl. Wochenschr. 107, 221–227 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Hall, O. J. & Klein, S. L. Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunol. 10, 1097–1107 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casas, S., Giuliani, F., Cremaschi, F., Yunes, R. & Cabrera, R. Neuromodulatory effect of progesterone on the dopaminergic, glutamatergic, and GABAergic activities in a male rat model of Parkinson’s disease. Neurol. Res. 35, 719–725 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Orozco, J. C. & Camacho-Arroyo, I. Progesterone actions during central nervous system development. Front. Neurosci. 13, 503 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abd El-Lateef, S. M., El-Sayed, E.-S.M., Mansour, A. M. & Salama, S. A. The protective role of estrogen and its receptors in gentamicin-induced acute kidney injury in rats. Life Sci. 239, 117082 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C.-C., Chang, C.-Y., Chang, S.-T. & Chen, S.-H. 17β-estradiol accelerated renal tubule regeneration in male rats after ischemia/reperfusion-induced acute kidney injury. Shock 46, 158–163 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wells, C. C. et al. Diabetic nephropathy is associated with decreased circulating estradiol levels and imbalance in the expression of renal estrogen receptors. Gend. Med. 2, 227–237 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Antus, B. et al. Estradiol is nephroprotective in the rat remnant kidney. Nephrol. Dial. Transplant. 18, 54–61 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maric, C., Sandberg, K. & Hinojosa-Laborde, C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat. J. Am. Soc. Nephrol. 15, 1546–1556 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y., Bond, J. & Thomas, P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. U. S. A. 100, 2237–2242 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemale, J. et al. Membrane progestin receptors α and γ in renal epithelium. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1783, 2234–2240 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Libby, A. E., Jones, B., Lopez-Santiago, I., Rowland, E. & Levi, M. Nuclear receptors in the kidney during health and disease. Mol. Aspects Med. 78, 100935 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan, X. Z., Varghese, Z., Powis, S. H. & Moorhead, J. F. Nuclear receptors and their coregulators in kidney. Kidney Int. 68, 2444–2461 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, M., Su, C. & Ng, S. Non-genomic mechanisms of progesterone action in the brain. Front. Neurosci. 7, 159 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen, S. L. et al. Nonclassical progesterone signalling molecules in the nervous system. J. Neuroendocrinol. 25, 991–1001 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asavasupreechar, T. et al. Systemic distribution of progesterone receptor subtypes in human tissues. J. Steroid Biochem. Mol. Biol. 199, 105599 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, P., Pang, Y., Camilletti, M. A. & Castelnovo, L. F. Functions of membrane progesterone receptors (mPRs, PAQRs) in nonreproductive tissues. Endocrinology 163, bqac147 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Quinkler, M. et al. Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor. Eur. J. Endocrinol. 146, 789–799 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinkler, M. et al. Progesterone metabolism in the human kidney and inhibition of 11beta-hydroxysteroid dehydrogenase type 2 by progesterone and its metabolites. J. Clin. Endocrinol. Metab. 84, 4165–4171 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Baker, M. E. & Katsu, Y. Progesterone: An enigmatic ligand for the mineralocorticoid receptor. Biochem. Pharmacol. 177, 113976 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bello-Alvarez, C., Zamora-Sánchez, C. J. & Camacho-Arroyo, I. Rapid actions of the nuclear progesterone receptor through cSrc in cancer. Cells 11, 1964 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aickareth, J., Hawwar, M., Sanchez, N., Gnanasekaran, R. & Zhang, J. Membrane progesterone receptors (mPRs/PAQRs) are going beyond its initial definitions. Membranes 13, 260 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, C. et al. PAQR5 expression is suppressed by TGFβ1 and associated with a poor survival outcome in renal clear cell carcinoma. Front. Oncol. 11, 827344 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, T., Xu, H.-R., Dong, W. & Dong, H. Expression and prognosis analysis of PAQR5 in kidney cancer. Front. Oncol. 12, 955510 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwapiszewska, G. et al. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur. Respir. J. 52 (2018).

  • Joung, J. W., Oh, H. K., Lee, S. J., Kim, Y. A. & Jung, H. J. Significance of intratumoral fibrosis in clear cell renal cell carcinoma. J. Pathol. Transl. Med. 52, 323–330 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, C., Zhao, Y., Wang, X. & Zhu, T. Intratumoral fibrosis in facilitating renal cancer aggressiveness: Underlying mechanisms and promising targets. Front. Cell Dev. Biol. 9, 651620 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Trad, B., Ashankyty, I. M. & Alaraj, M. Progesterone ameliorates diabetic nephropathy in streptozotocin-induced diabetic Rats. Diabetol. Metab. Syndr. 7, 97 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montezano, A. C. I. et al. Endothelin-1 contributes to the sexual differences in renal damage in DOCA-salt rats. Peptides 26, 1454–1462 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, G. C. et al. Decrease in glomerulonephritis and Th1-associated autoantibody production after progesterone treatment in NZB/NZW mice. Arthritis Rheum. 60, 1775–1784 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sehajpal, J., Kaur, T., Bhatti, R. & Singh, A. P. Role of progesterone in melatonin-mediated protection against acute kidney injury. J. Surg. Res. 191, 441–447 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 302, F1351–F1361 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zakiyanov, O., Kalousová, M., Zima, T. & Tesař, V. Matrix metalloproteinases in renal diseases: A critical appraisal. Kidney Blood Press. Res. 44, 298–330 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Z. et al. MMP-2 and 9 in chronic kidney disease. Int. J. Mol. Sci. 18, 776 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, I. M., Swingler, T. E., Sampieri, C. L. & Edwards, D. R. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell Biol. 40, 1362–1378 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mancini, A. & Di Battista, J. A. Transcriptional regulation of matrix metalloprotease gene expression in health and disease. Front. Biosci. 11, 423–446 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sirin, Y. & Susztak, K. Notch in the kidney: Development and disease. J. Pathol. 226, 394–403 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, S., Pollock, A. S., Mahimkar, R., Olson, J. L. & Lovett, D. H. Matrix metalloproteinase 2 and basement membrane integrity: A unifying mechanism for progressive renal injury. FASEB J. 20, 1898–1900 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carome, M. A. et al. Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. Am. J. Physiol. 264, F923–F929 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, J.-P. et al. Increased expression of intranuclear matrix metalloproteinase 9 in atrophic renal tubules is associated with renal fibrosis. PLoS ONE 7, e48164 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. & Wang, G. Progesterone resistance in endometriosis: Current evidence and putative mechanisms. Int. J. Mol. Sci. 24, 6992 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selvais, C. et al. Metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 ectodomain decreases endocytic clearance of endometrial matrix metalloproteinase-2 and -9 at menstruation. Endocrinology 150, 3792–3799 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, T. et al. Hormonal regulation of collagenolysis in uterine cervical fibroblasts. Modulation of synthesis of procollagenase, prostromelysin and tissue inhibitor of metalloproteinases (TIMP) by progesterone and oestradiol-17 beta. Biochem. J. 275, 645–650 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell, B. S., Dhaher, Y. Y. & Szleifer, I. G. Review of the multiscale effects of female sex hormones on matrix metalloproteinase-mediated collagen degradation. Crit. Rev. Biomed. Eng. 43, 401–428 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Morishita, M., Miyagi, M. & Iwamoto, Y. Effects of sex hormones on production of interleukin-1 by human peripheral monocytes. J. Periodontol. 70, 757–760 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedotcheva, T. A., Fedotcheva, N. I. & Shimanovsky, N. L. Progesterone as an anti-inflammatory drug and immunomodulator: New aspects in hormonal regulation of the inflammation. Biomolecules 12, 1299 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ström, J. O., Theodorsson, A., Ingberg, E., Isaksson, I.-M. & Theodorsson, E. Ovariectomy and 17β-estradiol replacement in rats and mice: A visual demonstration. J. Vis. Exp. https://doi.org/10.3791/4013 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandhi, J., Singh, J. P., Kaur, T., Ghuman, S. S. & Singh, A. P. Involvement of progesterone receptors in ascorbic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury. J. Surg. Res. 187, 278–288 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antus, B. et al. Effects of progesterone and selective oestrogen receptor modulators on chronic allograft nephropathy in rats. Nephrol. Dial. Transplant. 20, 329–335. https://doi.org/10.1093/ndt/gfh602 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 1–12 (2002).

    Article 

    Google Scholar
     



  • Source link