Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).
Li, M.-T., Tang, X.-H., Cai, H., Zhang, A.-H. & Guo, Z.-Y. Editorial: Molecular mechanism and therapeutic approach to renal interstitial fibrosis. Front. Med. 9, 879927 (2022).
Martínez-Klimova, E., Aparicio-Trejo, O. E., Tapia, E. & Pedraza-Chaverri, J. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9, 141 (2019).
Franco-Acevedo, A., Echavarria, R. & Melo, Z. Sex differences in renal function: Participation of gonadal hormones and prolactin. Endocrines 2, 185–202 (2021).
Peng, Y. et al. Testosterone induces renal tubular epithelial cell death through the HIF-1α/BNIP3 pathway. J. Transl. Med. 17, 62 (2019).
Sultanova, R. F., Schibalski, R., Yankelevich, I. A., Stadler, K. & Ilatovskaya, D. V. Sex differences in renal mitochondrial function: A hormone-gous opportunity for research. Am. J. Physiol. Renal Physiol. 319, F1117–F1124 (2020).
Banaei, S. & Rezagholizadeh, L. The role of hormones in renal disease and ischemia-reperfusion injury. Iran. J. Basic Med. Sci. 22, 469–476 (2019).
Bumke-Vogt, C. et al. Expression of the progesterone receptor and progesterone- metabolising enzymes in the female and male human kidney. J. Endocrinol. 175, 349–364 (2002).
Spencer, T. E. & Bazer, F. W. Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front. Biosci. 7, d1879–d1898 (2002).
Scheibl, P. & Zerbe, H. Effect of progesterone on the immune system in consideration of bovine placental retention. Dtsch. Tierarztl. Wochenschr. 107, 221–227 (2000).
Hall, O. J. & Klein, S. L. Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunol. 10, 1097–1107 (2017).
Casas, S., Giuliani, F., Cremaschi, F., Yunes, R. & Cabrera, R. Neuromodulatory effect of progesterone on the dopaminergic, glutamatergic, and GABAergic activities in a male rat model of Parkinson’s disease. Neurol. Res. 35, 719–725 (2013).
González-Orozco, J. C. & Camacho-Arroyo, I. Progesterone actions during central nervous system development. Front. Neurosci. 13, 503 (2019).
Abd El-Lateef, S. M., El-Sayed, E.-S.M., Mansour, A. M. & Salama, S. A. The protective role of estrogen and its receptors in gentamicin-induced acute kidney injury in rats. Life Sci. 239, 117082 (2019).
Wu, C.-C., Chang, C.-Y., Chang, S.-T. & Chen, S.-H. 17β-estradiol accelerated renal tubule regeneration in male rats after ischemia/reperfusion-induced acute kidney injury. Shock 46, 158–163 (2016).
Wells, C. C. et al. Diabetic nephropathy is associated with decreased circulating estradiol levels and imbalance in the expression of renal estrogen receptors. Gend. Med. 2, 227–237 (2005).
Antus, B. et al. Estradiol is nephroprotective in the rat remnant kidney. Nephrol. Dial. Transplant. 18, 54–61 (2003).
Maric, C., Sandberg, K. & Hinojosa-Laborde, C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat. J. Am. Soc. Nephrol. 15, 1546–1556 (2004).
Zhu, Y., Bond, J. & Thomas, P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. U. S. A. 100, 2237–2242 (2003).
Lemale, J. et al. Membrane progestin receptors α and γ in renal epithelium. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1783, 2234–2240 (2008).
Libby, A. E., Jones, B., Lopez-Santiago, I., Rowland, E. & Levi, M. Nuclear receptors in the kidney during health and disease. Mol. Aspects Med. 78, 100935 (2021).
Ruan, X. Z., Varghese, Z., Powis, S. H. & Moorhead, J. F. Nuclear receptors and their coregulators in kidney. Kidney Int. 68, 2444–2461 (2005).
Singh, M., Su, C. & Ng, S. Non-genomic mechanisms of progesterone action in the brain. Front. Neurosci. 7, 159 (2013).
Petersen, S. L. et al. Nonclassical progesterone signalling molecules in the nervous system. J. Neuroendocrinol. 25, 991–1001 (2013).
Asavasupreechar, T. et al. Systemic distribution of progesterone receptor subtypes in human tissues. J. Steroid Biochem. Mol. Biol. 199, 105599 (2020).
Thomas, P., Pang, Y., Camilletti, M. A. & Castelnovo, L. F. Functions of membrane progesterone receptors (mPRs, PAQRs) in nonreproductive tissues. Endocrinology 163, bqac147 (2022).
Quinkler, M. et al. Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor. Eur. J. Endocrinol. 146, 789–799 (2002).
Quinkler, M. et al. Progesterone metabolism in the human kidney and inhibition of 11beta-hydroxysteroid dehydrogenase type 2 by progesterone and its metabolites. J. Clin. Endocrinol. Metab. 84, 4165–4171 (1999).
Baker, M. E. & Katsu, Y. Progesterone: An enigmatic ligand for the mineralocorticoid receptor. Biochem. Pharmacol. 177, 113976 (2020).
Bello-Alvarez, C., Zamora-Sánchez, C. J. & Camacho-Arroyo, I. Rapid actions of the nuclear progesterone receptor through cSrc in cancer. Cells 11, 1964 (2022).
Aickareth, J., Hawwar, M., Sanchez, N., Gnanasekaran, R. & Zhang, J. Membrane progesterone receptors (mPRs/PAQRs) are going beyond its initial definitions. Membranes 13, 260 (2023).
Tao, C. et al. PAQR5 expression is suppressed by TGFβ1 and associated with a poor survival outcome in renal clear cell carcinoma. Front. Oncol. 11, 827344 (2021).
Lu, T., Xu, H.-R., Dong, W. & Dong, H. Expression and prognosis analysis of PAQR5 in kidney cancer. Front. Oncol. 12, 955510 (2022).
Kwapiszewska, G. et al. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur. Respir. J. 52 (2018).
Joung, J. W., Oh, H. K., Lee, S. J., Kim, Y. A. & Jung, H. J. Significance of intratumoral fibrosis in clear cell renal cell carcinoma. J. Pathol. Transl. Med. 52, 323–330 (2018).
Hu, C., Zhao, Y., Wang, X. & Zhu, T. Intratumoral fibrosis in facilitating renal cancer aggressiveness: Underlying mechanisms and promising targets. Front. Cell Dev. Biol. 9, 651620 (2021).
Al-Trad, B., Ashankyty, I. M. & Alaraj, M. Progesterone ameliorates diabetic nephropathy in streptozotocin-induced diabetic Rats. Diabetol. Metab. Syndr. 7, 97 (2015).
Montezano, A. C. I. et al. Endothelin-1 contributes to the sexual differences in renal damage in DOCA-salt rats. Peptides 26, 1454–1462 (2005).
Hughes, G. C. et al. Decrease in glomerulonephritis and Th1-associated autoantibody production after progesterone treatment in NZB/NZW mice. Arthritis Rheum. 60, 1775–1784 (2009).
Sehajpal, J., Kaur, T., Bhatti, R. & Singh, A. P. Role of progesterone in melatonin-mediated protection against acute kidney injury. J. Surg. Res. 191, 441–447 (2014).
Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 302, F1351–F1361 (2012).
Zakiyanov, O., Kalousová, M., Zima, T. & Tesař, V. Matrix metalloproteinases in renal diseases: A critical appraisal. Kidney Blood Press. Res. 44, 298–330 (2019).
Cheng, Z. et al. MMP-2 and 9 in chronic kidney disease. Int. J. Mol. Sci. 18, 776 (2017).
Clark, I. M., Swingler, T. E., Sampieri, C. L. & Edwards, D. R. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell Biol. 40, 1362–1378 (2008).
Mancini, A. & Di Battista, J. A. Transcriptional regulation of matrix metalloprotease gene expression in health and disease. Front. Biosci. 11, 423–446 (2006).
Sirin, Y. & Susztak, K. Notch in the kidney: Development and disease. J. Pathol. 226, 394–403 (2012).
Cheng, S., Pollock, A. S., Mahimkar, R., Olson, J. L. & Lovett, D. H. Matrix metalloproteinase 2 and basement membrane integrity: A unifying mechanism for progressive renal injury. FASEB J. 20, 1898–1900 (2006).
Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573 (2006).
Carome, M. A. et al. Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. Am. J. Physiol. 264, F923–F929 (1993).
Tsai, J.-P. et al. Increased expression of intranuclear matrix metalloproteinase 9 in atrophic renal tubules is associated with renal fibrosis. PLoS ONE 7, e48164 (2012).
Zhang, P. & Wang, G. Progesterone resistance in endometriosis: Current evidence and putative mechanisms. Int. J. Mol. Sci. 24, 6992 (2023).
Selvais, C. et al. Metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 ectodomain decreases endocytic clearance of endometrial matrix metalloproteinase-2 and -9 at menstruation. Endocrinology 150, 3792–3799 (2009).
Sato, T. et al. Hormonal regulation of collagenolysis in uterine cervical fibroblasts. Modulation of synthesis of procollagenase, prostromelysin and tissue inhibitor of metalloproteinases (TIMP) by progesterone and oestradiol-17 beta. Biochem. J. 275, 645–650 (1991).
Powell, B. S., Dhaher, Y. Y. & Szleifer, I. G. Review of the multiscale effects of female sex hormones on matrix metalloproteinase-mediated collagen degradation. Crit. Rev. Biomed. Eng. 43, 401–428 (2015).
Morishita, M., Miyagi, M. & Iwamoto, Y. Effects of sex hormones on production of interleukin-1 by human peripheral monocytes. J. Periodontol. 70, 757–760 (1999).
Fedotcheva, T. A., Fedotcheva, N. I. & Shimanovsky, N. L. Progesterone as an anti-inflammatory drug and immunomodulator: New aspects in hormonal regulation of the inflammation. Biomolecules 12, 1299 (2022).
Ström, J. O., Theodorsson, A., Ingberg, E., Isaksson, I.-M. & Theodorsson, E. Ovariectomy and 17β-estradiol replacement in rats and mice: A visual demonstration. J. Vis. Exp. https://doi.org/10.3791/4013 (2012).
Sandhi, J., Singh, J. P., Kaur, T., Ghuman, S. S. & Singh, A. P. Involvement of progesterone receptors in ascorbic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury. J. Surg. Res. 187, 278–288 (2014).
Antus, B. et al. Effects of progesterone and selective oestrogen receptor modulators on chronic allograft nephropathy in rats. Nephrol. Dial. Transplant. 20, 329–335. https://doi.org/10.1093/ndt/gfh602 (2005).
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 1–12 (2002).