Atanasov AG, Zotchev SB, Dirsch VM. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.
Simeis DD, Serra S. Actinomycetes: a never-ending source of bioactive compounds-an overview on antibiotics production. Antibiotics. 2021;10:483.
Hoshino S, et al. Niizalactams A–C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. J Nat Prod. 2015;78:3011–7.
Matsui N, et al. Activation of cryptic milbemycin A4 production in Streptomyces sp. BB47 by the introduction of a functional bldA gene. J Gen Appl Microbiol. 2021;67:240–7.
Saito S, et al. Dihydromaniwamycin E, a heat-shock metabolite from thermotolerant Streptomyces sp. JA74, exhibiting antiviral activity against influenza and SARS-CoV-2 viruses. J Nat Prod. 2022;85:2583–91.
Elsbaey M, Oku N, Abdel-Mottaleb MSA, Igarashi Y. Allostreptopyrroles A–E, β-alkylpyrrole derivatives from an actinomycete Allostreptomyces sp. RD068384. Beilstein J Org Chem. 2024;20:1981–7.
Liu C, et al. Isolation and structure determination of allopteridic acids A–C and allokutzmicin from an unexplored actinomycete of the genus Allokutzneria. J Antibiot. 2023;76:305–15.
Liu C, et al. Catellatolactams A–C, plant growth-promoting ansamacrolactams from a rare actinomycete of the genus Catellatospora. J Nat Prod. 2022;85:1993–9.
Lu S, et al. Krasilnikolides A and B and detalosylkrasilnikolide A, cytotoxic 20-membered macrolides from the genus Krasilnikovia: assignment of anomeric configuration by J-based configuration analysis. J Nat Prod. 2022;85:2796–803.
Saito S, et al. Phytohabitols A–C, δ-lactone-terminated polyketides from an actinomycete of the genus Phytohabitans. J Nat Prod. 2022;8:1697–703.
Saito S, et al. A cyclopeptide and three oligomycin-class polyketides produced by an underexplored actinomycete of the genus Pseudosporangium. Beilstein J Org Chem. 2020;16:1100–10.
Tamura T, Hayakawa M, Hatano K. A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int J Syst Bacteriol. 1998;48:995–05.
The bacterio.net project. https://lpsn.dsmz.de/genus/Cryptosporangium. Accessed 02 Sep 2024.
AntiSMASH. The AntiSMASH project. https://antismash.secondarymetabolites.org. Accessed 02 Sep 2024.
Triningsih DW, Yoshizaki N, Igarashi Y. Wychimicins E and F from a rare actinomycete of the genus Cryptosporangium. J Antibiot. 2024;77:847–851.
Igarashi Y, Ikeda M, Miyanaga S, Kasai H, Shizuri Y, Matsuura N. Two butenolides with PPARα agonistic activity from a marine-derived Streptomyces. J Antibiot. 2015;68:345–7.
Kim Y, et al. Nocapyrones: α- and γ-pyrones from a marine-derived Nocardiopsis sp. Mar Drugs. 2014;12:4110–25.
Xu Y, et al. Genome mining of cinnamoyl-containing nonribosomal peptide gene clusters directs the production of malacinnamycin. Org Lett. 2024;26:971–6.
Saksena AK, et al. Structure elucidation of Sch 49088, a novel everninomicin antibiotic containing an unusual hydroxylamine-ether sugar, everhydroxylaminose. Tetrahedron Lett. 1998;39:8441–4.
Ohlendorf B, et al. Diacidene, a polyene dicarboxylic acid from a Micromonospora isolate from the German Wadden Sea. Z Naturforsch C. 2012;67:445–50.
Burres NS, et al. Simple aromatics identified with a NFAT-lacZ transcription assay for the detection of immunosuppressants. J Antibiot. 1995;48:380–6.
Lacey H, Chen R, Vuong D. Yeppoonic acids A–D: 1,2,4-trisubstituted arene carboxylic acid co-metabolites of conglobatin from an Australian Streptomyces sp. J Antibiot. 2022;75:108–12.
Zhou T, Komaki H, Ichikawa N, Hosoyama A, Sato S, Igarashi Y. Biosynthesis of akaeolide and lorneic acids and annotation of type I polyketide synthase gene clusters in the genome of Streptomyces sp. NPS554. Mar Drugs. 2015;13:581–96.
Yang YM, et al. Cytochrome P450 catalyzes benzene ring formation in the biosynthesis of trialkyl-substituted aromatic polyketides. Angew Chem Int Ed Engl. 2023;62:1–7.
Deng Z, et al. An unusual type II polyketide synthase system involved in cinnamoyl lipid biosynthesis. Angew Chem Int Ed. 2021;60:153–8.
Zhang J, et al. Reconstitution of a highly reducing Type II PKS system reveals 6π-electrocyclization is required for o-dialkylbenzene biosynthesis. J Am Chem Soc. 2021;143:2962–9.
Shi J, et al. In Vitro reconstitution of cinnamoyl moiety reveals two distinct cyclases for benzene ring formation. J Am Chem Soc. 2022;144:7939–48.
Zhou W, Alharbi HA, Hummingbird E, Keatinge-Clay AT, Mahmud T. Functional studies and revision of the NFAT-133/TM-123 biosynthetic pathway in Streptomyces pactum. ACS Chem Biol. 2022;17:2039–45.
Deng Z, et al. A versatile thioesterase involved in dimerization during cinnamoyl lipid biosynthesis. Angew Chem Int Ed. 2024;63:e202402010.
Song MM, et al. Diketopiperazine and enterotoxin analogues from the mangrove derived-soil Streptomyces sp. SCSIO 41400 and their biological evaluation. Nat Prod Res. 2022;36:1197–04.
Ye G, Huang C, Li J, Chen T, Tang J, Liu W, Long Y. Isolation, structural characterization and antidiabetic activity of new diketopiperazine alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c. Mar Drugs. 2021;19:402.
Bushman TJ, Cunneely Q, Ciesla L. Chapter 3—extraction, isolation, and biological activity of natural cyclic dipeptides. Stud Nat Prod Chem. 2023;78:75–99.
Pérez-Picaso L, Rios MY, Hernández AN, Martínez J. 1H and 13Cassignments of cyclo [N-(Lys-Phe)-Orn-Val], a semicyclic imidetetrapeptide from Burkholderia cepacia. Mag Reson Chem. 2006;44:959–61.
Zuo L, et al. Hangtaimycin, a peptide secondary metabolite discovered from Streptomyces spectabilis CPCC 200148 by chemical screening. J Antibiot. 2016;69:835–8.
Liu Z, Chen Y, Li S, Hu C, Liu H, Zhang W. Indole diketopiperazine alkaloids from the deep-sea-derived fungus Aspergillus sp. FS445. Nat Prod Res. 2021;36:5213–21.
Harken L, Li S-M. Modifications of diketopiperazines assembled by cyclodipeptide synthases with cytochrome P 450 enzymes. Appl Microbiol Biotechnol. 2021;105:2277–85.
Hayakawa M, Otoguro M, Takeuchi T, Yamazaki T, Iimura Y. Application of a method incorporating differential centrifugation for selective isolation of motile actinomycetes in soil and plant litter. Antonie van Leeuwenhoek. 2000;78:171–5.
Yamamura H, Hayakawa M, Iimura Y. Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. J Appl Microbiol. 2003;95:677–85.
Yoon SH, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol. 1987;65:501–9.
Sharma AR, Harunari E, Oku N, Matsuura N, Trianto A, Igarashi Y. Two antibacterial and PPAR α/γ-agonistic unsaturated keto fatty acids from a coral-associated actinomycete of the genus Micrococcus. Beilstein J Org Chem. 2020;16:297–304.
Matsuura N, Gamo K, Miyachi H, Iinuma M, Kawada T, Takahashi N, Akao Y, Tosa H. γ-Mangostin from Garcinia mangostana pericarps as a dual agonist that activates both PPARα and PPARδ. Biosci Biotechnol Biochem. 2013;77:2430–5.