Select Page


  • Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 6736. https://doi.org/10.1016/S0140-6736(21)02724-0.

  • Tackling drug-resistant infections globally: Final report and recommendations. 2016. Available from: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. [Accessed 29 July 2024].

  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88:26–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control. J Basic Microbiol. 2021;61:1049–70.

    Article 
    PubMed 

    Google Scholar
     

  • Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis. 1991;163:1279–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jørgensen KM, Wassermann T, Jensen PØ, Hengzuang W, Molin S, Høiby N, et al. Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:4215–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lobanovska M, Pilla G. Penicillin’s discovery and antibiotic resistance: Lessons for the future? Yale J Biol Med. 2017;90:135–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020;21:e51034.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Global action plan on antimicrobial resistance. World Health Organization: Geneva. 2015. Available from: https://iris.who.int/handle/10665/193736 [Accessed 29 July 2024].

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.

    Article 
    PubMed 

    Google Scholar
     

  • Sati H, Gigante V, Cameron AM, Getahun H. WHO bacterial priority pathogens list, 2024 bacterial pathogens of public health importance to guide research, development, and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024.


    Google Scholar
     

  • Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii. New Microbiol. 2014;37:119–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma C, McClean S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle It. Vaccines. 2021;9:570.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: Evolution of a global pathogen. Pathog Dis. 2014;71:292–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarshar M, Behzadi P, Scribano D, Palamara AT, Ambrosi C. Acinetobacter baumannii: An ancient commensal with weapons of a pathogen. Pathogens. 2021;10:387.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen M, Joshi SG. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital‐acquired infections: a scientific review. J Appl Microbiol. 2021;131:2715–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novović K, Jovčić B. Colistin resistance in Acinetobacter baumannii: Molecular mechanisms and epidemiology. Antibiotics. 2023;12:516.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohr KI. History of antibiotics research. In: Stadler M, Dersch P (eds). How to overcome the antibiotic crisis. Springer International Publishing: Cham, 2016, pp 237–72.

  • Hutchings M, Truman A, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5:726–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Goethem MW, Marasco R, Hong P, Daffonchio D. The antibiotic crisis: On the search for novel antibiotics and resistance mechanisms. Microb Biotechnol. 2024;17:e14430.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil A, Elesawy BH, Ali TM, Ahmed OM. Bee venom: from venom to drug. Molecules. 2021;26:4941.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perumal Samy R, Stiles BG, Franco OL, Sethi G, Lim LHK. Animal venoms as antimicrobial agents. Biochem Pharmacol. 2017;134:127–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carcamo-Noriega EN, Sathyamoorthi S, Banerjee S, Gnanamani E, Mendoza-Trujillo M, Mata-Espinosa D, et al. 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom. Proc Natl Acad Sci USA. 2019;116:12642–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller JH. Experiments in molecular genetics. Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y., 1972.

  • Ferreira VF, Park A, Schmitz FJ, Valeriote FA. Synthesis of perfragilin A, B and some analogues. Tetrahedron. 2003;59:1349–57.

    Article 
    CAS 

    Google Scholar
     

  • Weinstein MP, Patel JB. M07 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th edition. Committee for Clinical Laboratory Standards: Wayne, PA, 2018.

  • Gallegos-Monterrosa R, Mendiola RO, Nuñez Y, Auvynet C, Kumar KM, Tang B, et al. Antibacterial and antibiofilm activities of ZIF-67. J Antibiot. 2023;76:603–12.

    Article 
    CAS 

    Google Scholar
     

  • Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN. Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochim Biophys Acta Gen Subj. 2017;1861:848–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinstein MP. M100 Performance standards for antimicrobial susceptibility testing, 30th Edition. 30th edition. Clinical and Laboratory Standards Institute: Wayne, Pa., 2020.

  • Reddy T, Chopra T, Marchaim D, Pogue JM, Alangaden G, Salimnia H, et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother. 2010;54:2235–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayobami O, Willrich N, Suwono B, Eckmanns T, Markwart R. The epidemiology of carbapenem-non-susceptible Acinetobacter species in Europe: analysis of EARS-Net data from 2013 to 2017. Antimicrob Resist Infect Control. 2020;9:89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartal C, Rolston KVI, Nesher L. Carbapenem-resistant Acinetobacter baumannii: Colonization, infection and current treatment options. Infect Dis Ther. 2022;11:683–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pormohammad A, Mehdinejadiani K, Gholizadeh P, Nasiri MJ, Mohtavinejad N, Dadashi M, et al. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb Pathog. 2020;139:103887.

    Article 
    PubMed 

    Google Scholar
     

  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15:453–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501.

    Article 

    Google Scholar
     

  • Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim Y-M. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol. 2020;46:665–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dandawate PR, Vyas AC, Padhye SB, Singh MW, Baruah JB. Perspectives on medicinal properties of benzoquinone compounds. Mini Rev Med Chem. 2010;10:436–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison M, Steele W, Danner DJ. The reaction of benzoquinone with amines and proteins. Arch Biochem Biophys. 1969;134:515–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin YS, McKelvey W, Waidyanatha S, Rappaport SM. Variability of albumin adducts of 1,4-benzoquinone, a toxic metabolite of benzene, in human volunteers. Biomarkers. 2006;11:14–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfeiffer E, Metzler M. Interaction of p-benzoquinone and p-biphenoquinone with microtubule proteins in vitro. Chem Biol Interact. 1996;102:37–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahey N, Tambat R, Kalia R, Ingavale R, Kodesia A, Chandal N, et al. Pyrrole-based inhibitors of RND-type efflux pumps reverse antibiotic resistance and display anti-virulence potential. PLoS Pathog. 2024;20:e1012121.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolton JL, Dunlap T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol. 2017;30:13–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abraham I, Joshi R, Pardasani P, Pardasani RT. Recent advances in 1,4-benzoquinone chemistry. J Braz Chem Soc. 2011;22:385–421.

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez-Villoria AM, Tamayo-Legorreta E, Garza-Ramos U, Barrios H, Sanchez-Pérez A, Rodríguez-Medina N, et al. A multicenter study in Mexico finds Acinetobacter baumannii clinical isolates belonging to clonal complexes 636B (113B) and 92B harboring OXA-72, OXA-239, and OXA-469. Antimicrob Agents Chemother. 2016;60:2587–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamayo-Legorreta EM, Garza-Ramos U, Barrios-Camacho H, Sanchez-Perez A, Galicia-Paredes A, Meza-Chavez A, et al. Identification of OXA-23 carbapenemases: novel variant OXA-239 in Acinetobacter baumannii ST758 clinical isolates in Mexico. New Microbes New Infect. 2014;2:173–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoiseth SK, Stocker BAD. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291:238–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Christmas Pop-up