Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 6736. https://doi.org/10.1016/S0140-6736(21)02724-0.
Tackling drug-resistant infections globally: Final report and recommendations. 2016. Available from: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. [Accessed 29 July 2024].
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33.
Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88:26–40.
Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control. J Basic Microbiol. 2021;61:1049–70.
Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis. 1991;163:1279–85.
Jørgensen KM, Wassermann T, Jensen PØ, Hengzuang W, Molin S, Høiby N, et al. Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:4215–21.
Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.
Lobanovska M, Pilla G. Penicillin’s discovery and antibiotic resistance: Lessons for the future? Yale J Biol Med. 2017;90:135–45.
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020;21:e51034.
Global action plan on antimicrobial resistance. World Health Organization: Geneva. 2015. Available from: https://iris.who.int/handle/10665/193736 [Accessed 29 July 2024].
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.
Sati H, Gigante V, Cameron AM, Getahun H. WHO bacterial priority pathogens list, 2024 bacterial pathogens of public health importance to guide research, development, and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024.
Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii. New Microbiol. 2014;37:119–27.
Ma C, McClean S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle It. Vaccines. 2021;9:570.
Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: Evolution of a global pathogen. Pathog Dis. 2014;71:292–301.
Sarshar M, Behzadi P, Scribano D, Palamara AT, Ambrosi C. Acinetobacter baumannii: An ancient commensal with weapons of a pathogen. Pathogens. 2021;10:387.
Nguyen M, Joshi SG. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital‐acquired infections: a scientific review. J Appl Microbiol. 2021;131:2715–38.
Novović K, Jovčić B. Colistin resistance in Acinetobacter baumannii: Molecular mechanisms and epidemiology. Antibiotics. 2023;12:516.
Mohr KI. History of antibiotics research. In: Stadler M, Dersch P (eds). How to overcome the antibiotic crisis. Springer International Publishing: Cham, 2016, pp 237–72.
Hutchings M, Truman A, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80.
Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5:726–49.
Van Goethem MW, Marasco R, Hong P, Daffonchio D. The antibiotic crisis: On the search for novel antibiotics and resistance mechanisms. Microb Biotechnol. 2024;17:e14430.
Khalil A, Elesawy BH, Ali TM, Ahmed OM. Bee venom: from venom to drug. Molecules. 2021;26:4941.
Perumal Samy R, Stiles BG, Franco OL, Sethi G, Lim LHK. Animal venoms as antimicrobial agents. Biochem Pharmacol. 2017;134:127–38.
Carcamo-Noriega EN, Sathyamoorthi S, Banerjee S, Gnanamani E, Mendoza-Trujillo M, Mata-Espinosa D, et al. 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom. Proc Natl Acad Sci USA. 2019;116:12642–7.
Miller JH. Experiments in molecular genetics. Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y., 1972.
Ferreira VF, Park A, Schmitz FJ, Valeriote FA. Synthesis of perfragilin A, B and some analogues. Tetrahedron. 2003;59:1349–57.
Weinstein MP, Patel JB. M07 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th edition. Committee for Clinical Laboratory Standards: Wayne, PA, 2018.
Gallegos-Monterrosa R, Mendiola RO, Nuñez Y, Auvynet C, Kumar KM, Tang B, et al. Antibacterial and antibiofilm activities of ZIF-67. J Antibiot. 2023;76:603–12.
Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN. Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochim Biophys Acta Gen Subj. 2017;1861:848–59.
Weinstein MP. M100 Performance standards for antimicrobial susceptibility testing, 30th Edition. 30th edition. Clinical and Laboratory Standards Institute: Wayne, Pa., 2020.
Reddy T, Chopra T, Marchaim D, Pogue JM, Alangaden G, Salimnia H, et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother. 2010;54:2235–8.
Ayobami O, Willrich N, Suwono B, Eckmanns T, Markwart R. The epidemiology of carbapenem-non-susceptible Acinetobacter species in Europe: analysis of EARS-Net data from 2013 to 2017. Antimicrob Resist Infect Control. 2020;9:89.
Bartal C, Rolston KVI, Nesher L. Carbapenem-resistant Acinetobacter baumannii: Colonization, infection and current treatment options. Infect Dis Ther. 2022;11:683–94.
Pormohammad A, Mehdinejadiani K, Gholizadeh P, Nasiri MJ, Mohtavinejad N, Dadashi M, et al. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb Pathog. 2020;139:103887.
Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15:453–64.
C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501.
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim Y-M. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol. 2020;46:665–88.
Dandawate PR, Vyas AC, Padhye SB, Singh MW, Baruah JB. Perspectives on medicinal properties of benzoquinone compounds. Mini Rev Med Chem. 2010;10:436–54.
Morrison M, Steele W, Danner DJ. The reaction of benzoquinone with amines and proteins. Arch Biochem Biophys. 1969;134:515–23.
Lin YS, McKelvey W, Waidyanatha S, Rappaport SM. Variability of albumin adducts of 1,4-benzoquinone, a toxic metabolite of benzene, in human volunteers. Biomarkers. 2006;11:14–27.
Pfeiffer E, Metzler M. Interaction of p-benzoquinone and p-biphenoquinone with microtubule proteins in vitro. Chem Biol Interact. 1996;102:37–53.
Mahey N, Tambat R, Kalia R, Ingavale R, Kodesia A, Chandal N, et al. Pyrrole-based inhibitors of RND-type efflux pumps reverse antibiotic resistance and display anti-virulence potential. PLoS Pathog. 2024;20:e1012121.
Bolton JL, Dunlap T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol. 2017;30:13–37.
Abraham I, Joshi R, Pardasani P, Pardasani RT. Recent advances in 1,4-benzoquinone chemistry. J Braz Chem Soc. 2011;22:385–421.
Gonzalez-Villoria AM, Tamayo-Legorreta E, Garza-Ramos U, Barrios H, Sanchez-Pérez A, Rodríguez-Medina N, et al. A multicenter study in Mexico finds Acinetobacter baumannii clinical isolates belonging to clonal complexes 636B (113B) and 92B harboring OXA-72, OXA-239, and OXA-469. Antimicrob Agents Chemother. 2016;60:2587–8.
Tamayo-Legorreta EM, Garza-Ramos U, Barrios-Camacho H, Sanchez-Perez A, Galicia-Paredes A, Meza-Chavez A, et al. Identification of OXA-23 carbapenemases: novel variant OXA-239 in Acinetobacter baumannii ST758 clinical isolates in Mexico. New Microbes New Infect. 2014;2:173–4.
Hoiseth SK, Stocker BAD. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291:238–9.