Select Page


  • Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov. 2022;21:359–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim E, Moore B, Yoon Y. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat Chem Biol. 2015;11:649–59.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T. Altemicidin, a new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and physico-chemical and biological properties. J Antibiot. 1989;42:1556–61.

    CAS 

    Google Scholar
     

  • Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T. Altemicidin, a new acaricidal and antitumor substance. II. Structure determination. J Antibiot. 1989;42:1562–6.

    CAS 

    Google Scholar
     

  • Yan Y, Liu N, Tang Y. Recent developments in self-resistance gene directed natural product discovery. Nat Prod Rep. 2020;37:879–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang X, Li J, Millán-Aguiñaga N, Zhang JJ, O’Neill EC, Ugalde JA, Jensen PR, et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem Biol. 2015;10:2841–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Y, Liu Q, Zang X, Yuan S, Bat-Erdene U, Nguyen C, et al. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature. 2018;559:415–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Lee SW, Choi EC, Choi SY. Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol. 2003;61:278–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Ud-Din AIMS, Tikhomirova A, Roujeinikova A. Structure and functional diversity of GCN5-related n-acetyltransferases (GNAT). Int J Mol Sci. 2016;17:1018.


    Google Scholar
     

  • Huang YT, Lyu SY, Chuang PH, Hsu NS, Li YS, Chan HC, et al. In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-β-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. ChemBioChem. 2009;10:2480–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu Z, Awakawa T, Ma Z, Abe I. Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nat Commun. 2019;10:184.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Y, Zhu Y, Awakawa T, Abe I. Unusual cysteine modifications in natural product biosynthesis. RSC Chem Biol. 2024;5:293–311.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchesnokov EP, Faponle AS, Davies CG, Quesne MG, Turner R, Fellner M, et al. An iron-oxygen intermediate formed during the catalytic cycle of cysteine dioxygenase. Chem Commun. 2016;52:8814–7.

    CAS 

    Google Scholar
     

  • Kumar D, Sastry GN, Goldberg DP, de Visser SP. Mechanism of S-oxygenation by a cysteine dioxygenase model complex. J Phys Chem A. 2012;116:582–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Awakawa T, Barra L, Abe I. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. J Ind Microbiol Biotechnol. 2021;48:1–8.


    Google Scholar
     

  • Baunach M, Ding L, Bruhn T, Bringmann G, Hertweck C. Regiodivergent N-C and N-N aryl coupling reactions of indoloterpenes and cycloether formation mediated by a single bacterial flavoenzyme. Angew Chem Int Ed. 2013;52:9040–3.

    CAS 

    Google Scholar
     

  • Harmange Magnani CS, Hernández-Meléndez JR, Tantillo DJ, Maimone TJ. Total synthesis of altemicidin: a surprise ending for a monoterpene alkaloid. JACS Au. 2023;3:2883–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barra L, Awakawa T, Shirai K, Hu Z, Bashiri G, Abe I. β-NAD as a building block in natural product biosynthesis. Nature. 2021;600:754–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Barra L, Awakawa T, Abe I. Noncanonical functions of enzyme cofactors as building blocks in natural product biosynthesis. JACS Au. 2022;2:1950–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awakawa T, Mori T, Barra L, Ahmed Y, Ushimaru R, Gao Y, et al. The structural basis of pyridoxal-5’-phosphate-dependent β-NAD-alkylating enzymes. Nat Catal. 2024;7:1099–108.

    CAS 

    Google Scholar
     

  • Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004;73:383–415.

    CAS 
    PubMed 

    Google Scholar
     

  • Huai Q, Xia Y, Chen Y, Callahan B, Li N, Ke H. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5’-phosphate provide new insight into catalytic mechanisms. J Biol Chem. 2001;276:38210–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z, Pan G, Zhou H, Shen B. Discovery and characterization of 1-aminocyclopropane-1-carboxylic acid synthase of bacterial origin. J Am Chem Soc. 2018;140:16957–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly RC, Bolitho ME, Higgins DA, Lu W, Ng WL, Jeffrey PD, et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat Chem Biol. 2009;5:891–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui Z, Overbay J, Wang X, Liu X, Zhang Y, Bhardwaj M, et al. Pyridoxal-5’-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis. Nat Chem Biol. 2020;16:904–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depaix A, Kowalska J. NAD analogs in aid of chemical biology and medicinal chemistry. Molecules. 2019;24:4187.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Mori T, Karasawa M, Shirai K, Chen W, Terada T, et al. “Structure-function analysis of carrier protein-dependent 2-sulfamoylacetyltransferase in the biosynthesis of altemicidin.” Nat Commun. 2024;15:10896.

  • Mori T, Sakurada K, Awakawa T, He H, Ushimaru R, Abe I. Structure-function analysis of 2-sulfamoylacetic acid synthase in altemicidin biosynthesis. J Antibiot. 2025;78:149–58.



  • Source link

    Christmas Pop-up