Select Page


  • Ullah S, Son S, Yun HY, Kim DH, Chun P, Moon HR. Tyrosinase inhibitors: a patent review (2011-2015). Expert Opin Ther Pat. 2016;26:347–362.

    CAS 
    PubMed 

    Google Scholar
     

  • Soares MA, Almeida MA, Goulart CM, Chaves OA, Echevarria A, Oliveira MCC. Thiosemicarbazones as inhibitors of tyrosinase enzyme. Bioorg Med Chem Lett. 2017;27:3546–3550.

    CAS 
    PubMed 

    Google Scholar
     

  • William SO. The tyrosinase gene and oculocutaneous albinism type 1(OCA1): a model for understanding the molecular biology of melanin formation. Pigm Cell Res. 2000;13:320–325.


    Google Scholar
     

  • Bloethner S, Scherer D, Drechsel M, Hemminki K, Kumar R. Malignant melanoma-a genetic overview. Actas Dermo Sifiliogr. 2009;100:38.


    Google Scholar
     

  • Li J, Feng L, Liu L, Wang F, Ouyang L, Zhang L, et al. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem. 2021;224:11374410.


    Google Scholar
     

  • Fujimoto N, Onodera H, Mitsumori K, Tamura T, Maruyama S, Ito A. Changes in thyroid function during development of thyroid hyperplasia induced by kojic acid in F344 rats. Carcinogenesis. 1999;20:1567–1572.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao JM, Yang SX, Qin JC. Azaphilones: chemistry and biology. Chem Rev. 2013;113:4755–4811.

    CAS 
    PubMed 

    Google Scholar
     

  • Osmanova N, Schultze W, Ayoub N. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev. 2010;9:315–342.

    CAS 

    Google Scholar
     

  • Tang JL, Zhou ZY, Yang T, Yao C, Wu LW, Li GY. Azaphilone alkaloids with anti-inflammatory activity from fungus Penicillium sclerotiorum cib-411. J Agric Food Chem. 2019;67:2175–2182.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang HM, Cai RL, Zang ZM, Yang WC, Wang B, Zhu G, et al. Azaphilone derivatives with anti-inflammatory activity from the mangrove endophytic fungus Penicillium sclerotiorum ZJHJJ-18. Bioorg Chem. 2022;122:105721.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang WY, Liao YY, Chen RX, Hou YP, Ke WQ, Zhang BB, et al. Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar Drugs. 2018;16:61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Zheng YY, Chen ZQ, Shen NX, Shen L, Zhang FM, et al. NaBr-induced production of brominated azaphilones and related tricyclic polyketides by the marine-derived fungus Penicillium janthinellum HK1-6. J Nat Prod. 2019;82:368–374.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen M, Shen NX, Chen ZQ, Zhang FM, Chen Y. Penicilones A−D, anti-MRSA azaphilones from the marine-derived fungus Penicillium janthinellum HK1‑6. J Nat Prod. 2017;80:1081–1086.

    CAS 
    PubMed 

    Google Scholar
     

  • Cao F, Meng ZH, Mu X, Yue YF, Zhu HJ. Absolute configuration of bioactive azaphilones from the marine-derived fungus Pleosporales sp. CF09‑1. J Nat Prod. 2019;82:386–392.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Wang Y, Wang W, Fu P, Liu PP, Zhu WM. Anti-influenza virus polyketides from the acid-tolerant fungus Penicillium purpurogenum JS03-21. J Nat Prod. 2011;74:2014–2018.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu HQ, Sperlich J, Mándi A, Kurtán T, Dai HF, Teusch N, et al. Azaphilone derivatives from the fungus Coniella fragariae inhibit NF-κB activation and reduce tumor cell migration. J Nat Prod. 2018;81:2493–2500.

    CAS 
    PubMed 

    Google Scholar
     

  • Musso L, Dallavalle S, Merlini L, Bava A, Nasini G, Penco S, et al. Natural and semisynthetic azaphilones as a new scaffold for Hsp90 inhibitors. Bioorg Med Chem. 2010;18:6031–6043.

    CAS 
    PubMed 

    Google Scholar
     

  • Chidananda C, Sattur AP. Sclerotiorin, a novel inhibitor of lipoxygenase from Penicillium frequentans. J Agric Food Chem. 2007;55:2879–2883.

    CAS 
    PubMed 

    Google Scholar
     

  • Somoza AD, Lee KH, Chiang YM, Oakley BR, Wang CCC. Reengineering an azaphilone biosynthesis pathway in Aspergillus nidulans to create lipoxygenase inhibitors. Org Lett. 2012;14:972–975.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeun J, Jung H, Kim JH, Kim YO, Youn SH, Shin CS. Effect of the monascus pigment threonine derivative on regulation of the cholesterol level in mice. Food Chem. 2008;107:1078–1085.

    CAS 

    Google Scholar
     

  • Bang S, Baek JY, Kim GJ, Kim J, Kim SJ, Deyrup ST, et al. Azaphilones from an endophytic Penicillium sp. prevent neuronal cell death via inhibition of MAPKs and reduction of Bax/Bcl-2 ratio. J Nat Prod. 2021;84:2226–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang MM, Wang SY, Wang W, Wang Y, Wang H, Zhu WM. Inhibition effects of novel polyketide compound PPQ-B against influenza A virus replication by interfering with the cellular EGFR pathway. Antivir Res. 2017;143:74–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Marsini MA, Gowin KM, Pettus TRR. Total synthesis of (±)-Mitorubrinic Acid. Org Lett. 2006;8:3481–3483.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steyn PS, Vleggaar R. The structure of dihydrodeoxy-8-epi-austdiol and the absolute configuration of the azaphilones. J Chem Soc Perkin Trans 1. 1976;2:204–206.


    Google Scholar
     

  • Itabashi T, Ogasawara N, Nozawa K, Kawai K. Isolation and structures of new azaphilone derivatives, Falconensins E-G, from Emericella falconensis and absolute configurations of Falconensins A-G. Chem Pharm Bull. 1996;44:2213–2217.

    CAS 

    Google Scholar
     

  • Liu YY, Yang Q, Xia GP, Huang HB, Li HX, Ma L, et al. Polyketides with α‑glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J Nat Prod. 2015;78:1816–1822.

    CAS 
    PubMed 

    Google Scholar
     

  • Myobatake Y, Takeuchi T, Kuramochi K, Kuriyama I, Ishido T, Hirano K, et al. Pinophilins A and B, inhibitors of mammalian A-, B-, and Y-family DNA polymerases and human cancer cell proliferation. J Nat Prod. 2012;75:135–141.

    CAS 
    PubMed 

    Google Scholar
     

  • White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2:183–189.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamason RL, Mohideen MPK, Mest JR, Wong AC, Norton HL, Aros MC, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science. 2005;310:1782–1786.

    CAS 
    PubMed 

    Google Scholar
     

  • Raza H, Abbasi MA, Rehman A, Siddiqui SZ, Hassan M, Abbas Q. Synthesis, molecular docking, dynamic simulations, kinetic mechanism, cytotoxicity evaluation of N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl} butanamides as tyrosinase and melanin inhibitors: in vitro, in vivo and in silico approaches. Bioorg Chem.2020;94:103445

    CAS 
    PubMed 

    Google Scholar
     

  • Grassauer A, Weinmuellner R, Meier C, Pretsch A, Grassauer EP, Unger H. Iota-carrageenan is a potent inhibitor of rhinovirus infection. Virol J. 2008;5:107.

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Christmas Pop-up