Select Page


  • Pletcher, A. & Shibata, M. Prostate organogenesis. Development 149, dev200394 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, C., Heemers, H. & Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 7, a030452 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clocchiatti, A., Cora, E., Zhang, Y. & Dotto, G. P. Sexual dimorphism in cancer. Nat. Rev. Cancer 16, 330–339 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haupt, S., Caramia, F., Klein, S. L., Rubin, J. B. & Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 21, 393–407 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, J. B. The spectrum of sex differences in cancer. Trends Cancer 8, 303–315 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dotto, G. P. Gender and sex-time to bridge the gap. EMBO Mol. Med. 11, e10668 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davey, R. A. & Grossmann, M. Androgen receptor structure, function and biology: from bench to bedside. Clin. Biochem. Rev. 37, 3–15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heemers, H. V. & Tindall, D. J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28, 778–808 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kono, M. et al. Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. JAMA Oncol. 3, 1266–1273 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Shukla, G. C., Plaga, A. R., Shankar, E. & Gupta, S. Androgen receptor-related diseases: what do we know? Andrology 4, 366–381 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto, T. et al. The androgen receptor in health and disease. Annu. Rev. Physiol. 75, 201–224 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W.-J. et al. Comparison of the roles of estrogens and androgens in breast cancer and prostate cancer. J. Cell. Biochem. 121, 2756–2769 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leach, D. A., Fernandes, R. C. & Bevan, C. L. Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. Endocr. Oncol. 2, R112–R131 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahiya, U. R. & Heemers, H. V. Analyzing the androgen receptor interactome in prostate cancer: implications for therapeutic intervention. Cells 11, 936 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung, J. K. & Sadar, M. D. Non-genomic actions of the androgen receptor in prostate cancer. Front. Endocrinol. 8, 2 (2017).

    Article 

    Google Scholar
     

  • Bennesch, M. A. & Picard, D. Minireview: tipping the balance: ligand-independent activation of steroid receptors. Mol. Endocrinol. 29, 349–363 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Z. et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10, 309–319 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueda, T., Bruchovsky, N. & Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via mAPK and STAT3 signal transduction pathways. J. Biol. Chem. 277, 7076–7085 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, L. et al. ZFX mediates non-canonical oncogenic functions of the androgen receptor splice variant 7 in castrate-resistant prostate cancer. Mol. Cell 72, 341–354.e6 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahiya, V. & Bagchi, G. Non-canonical androgen signaling pathways and implications in prostate cancer. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119357 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, P. Membrane androgen receptors unrelated to nuclear steroid receptors. Endocrinology 160, 772–781 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, I. A. et al. Androgen insensitivity syndrome. Lancet 380, 1419–1428 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turcu, A. F., Rege, J., Auchus, R. J. & Rainey, W. E. 11-oxygenated androgens in health and disease. Nat. Rev. Endocrinol. 16, 284–296 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchetti, P. M. & Barth, J. H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 50, 95–107 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labrie, F. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. J. Steroid Biochem. Mol. Biol. 145, 133–138 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pugeat, M. et al. Sex hormone-binding globulin gene expression in the liver: drugs and the metabolic syndrome. Mol. Cell. Endocrinol. 316, 53–59 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simó, R., Sáez-López, C., Barbosa-Desongles, A., Hernández, C. & Selva, D. M. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol. Metab. 26, 376–383 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Samarkina, A. et al. Androgen receptor is a determinant of melanoma targeted drug resistance. Nat. Commun. 14, 6498 (2023). This study reveals that increased AR expression in melanoma cells is both required and sufficient to confer resistance to BRAF inhibitors through transcriptional activation mechanisms that can be targeted.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castoria, G. et al. Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J. Cell Biol. 161, 547–556 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya, S. et al. Biphasic transcriptional and posttranscriptional regulation of MYB by androgen signaling mediates its growth control in prostate cancer. J. Biol. Chem. 299, 102725 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, C. et al. Biphasic effect of androgens on prostate cancer cells and its correlation with androgen receptor coactivator dopa decarboxylase. J. Androl. 28, 804–812 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, F. et al. Sex differences orchestrated by androgens at single-cell resolution. Nature 629, 193–200 (2024). This study presents a single-cell transcriptomic atlas of sex differences in mice, revealing how androgens modulate immune gene expression and cell populations.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J., Wang, Q., Tan, A. F., Loh, C. J. L. & Toh, H. C. Sex differences in cancer and immunotherapy outcomes: the role of androgen receptor. Front. Immunol. 15, 1416941 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leo, J. et al. Stranger things: new roles and opportunities for androgen receptor in oncology beyond prostate cancer. Endocrinology 164, bqad071 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, C. & Ellisen, L. W. Revisiting androgen receptor signaling in breast cancer. Oncologist 28, 383–391 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. The androgen receptor in bladder cancer. Nat. Rev. Urol. 20, 560–574 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz, J., Wheler, J. J. & Kurzrock, R. Androgen receptors beyond prostate cancer: an old marker as a new target. Oncotarget 6, 592–603 (2014).

    Article 
    PubMed Central 

    Google Scholar
     

  • Lee, D. K. & Chang, C. Expression and degradation of androgen receptor: mechanism and clinical implication. J. Clin. Endocrinol. Metab. 88, 4043–4054 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, C. et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20, 457–471 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huhtaniemi, R. et al. High intratumoral dihydrotestosterone is associated with antiandrogen resistance in VCaP prostate cancer xenografts in castrated mice. iScience 25, 104287 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiota, M., Yokomizo, A. & Naito, S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J. Mol. Endocrinol. 47, R25–R41 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landi, M. T. et al. Genome-wide association meta-analyses combining multiple risk phenotypes provides insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 52, 494–504 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsen, C. M., Thompson, J. F., Pandeya, N. & Whiteman, D. C. Evaluation of sex-specific incidence of melanoma. JAMA Dermatol. 156, 553–560 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rampen, F. H. & Mulder, J. H. Malignant melanoma: an androgen-dependent tumour? Lancet 1, 562–564 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene 36, 1644–1654 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, M. et al. Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J. Exp. Med. 218, e20201137 (2021). The paper demonstrates that, despite heterogeneous expression, basal AR activity is required for sustained melanoma cell proliferation and tumorigenesis with the AR protein bridging transcription and transcription-coupled DNA repair.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. Androgen drives melanoma invasiveness and metastatic spread by inducing tumorigenic fucosylation. Nat. Commun. 15, 1148 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguirre-Portolés, C. et al. ZIP9 is a druggable determinant of sex differences in melanoma. Cancer Res. 81, 5991–6003 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vellano, C. P. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606, 797–803 (2022). The study shows that female patients with melanoma had significantly better responses to BRAF–MEK-targeted therapy than male patients, and in preclinical melanoma models, elevated AR expression impaired treatment efficacy, while AR inhibition improved responses.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci. Transl. Med. 11, eaao5253 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan, X., Liu, Y. & Wang, X. Targeting androgen receptor in glioblastoma. Crit. Rev. Oncol. Hematol. 191, 104142 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zalcman, N. et al. Androgen receptor: a potential therapeutic target for glioblastoma. Oncotarget 9, 19980–19993 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalcman, N., Gutreiman, M., Shahar, T., Weller, M. & Lavon, I. Androgen receptor activation in glioblastoma can be achieved by ligand-independent signaling through EGFR — a potential therapeutic target. Int. J. Mol. Sci. 22, 10954 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalin, M. G., Watson, P. A., Ho, A. L. & Morris, L. G. T. Androgen receptor signaling in salivary gland cancer. Cancers 9, 17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeoh, C. C. et al. Androgen receptor in salivary gland carcinoma: a review of an old marker as a possible new target. J. Oral. Pathol. Med. 47, 691–695 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viscuse, P. V., Price, K. A., Garcia, J. J., Schembri-Wismayer, D. J. & Chintakuntlawar, A. V. First line androgen deprivation therapy vs. chemotherapy for patients with androgen receptor positive recurrent or metastatic salivary gland carcinoma — a retrospective study. Front. Oncol. 9, 701 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matye, D., Leak, J., Woolbright, B. L. & Taylor, J. A. Preclinical models of bladder cancer: BBN and beyond. Nat. Rev. Urol. https://doi.org/10.1038/s41585-024-00885-9 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hsu, J.-W. et al. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am. J. Pathol. 182, 1811–1820 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sfakianos, J. P. et al. Epithelial plasticity can generate multi-lineage phenotypes in human and murine bladder cancers. Nat. Commun. 11, 2540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Beltran, A. et al. Molecular classification of bladder urothelial carcinoma using nanostring-based gene expression analysis. Cancers 13, 5500 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altevogt, P., Sammar, M., Hüser, L. & Kristiansen, G. Novel insights into the function of CD24: a driving force in cancer. Int. J. Cancer 148, 546–559 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Androgen receptor‐regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Rep. 21, e48467 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sottnik, J. L. et al. Androgen receptor regulates CD44 expression in bladder cancer. Cancer Res 81, 2833–2846 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Androgen dihydrotestosterone (DHT) promotes the bladder cancer nuclear AR-negative cell invasion via a newly identified membrane androgen receptor (mAR-SLC39A9)-mediated Gαi protein/MAPK/MMP9 intracellular signaling. Oncogene 39, 574–586 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaneko, S. & Li, X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci. Adv. 4, eaar5598 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, H. et al. KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and drives cell proliferation in bladder cancer. Cancer Res 83, 814–829 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, C. et al. KDM6 demethylases and their roles in human cancers. Front. Oncol. 11, 779918 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kashiwagi, E. et al. Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer. Oncotarget 7, 49169–49179 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ide, H. et al. FOXO1 inactivation induces cisplatin resistance in bladder cancer. Cancer Sci. 111, 3397–3400 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F., Langenstroer, P., Zhang, G., Iwamoto, Y. & See, W. A. Androgen dependent regulation of bacillus Calmette-Guerin induced interleukin-6 expression in human transitional carcinoma cell lines. J. Urol. 170, 2009–2013 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clocchiatti, A. et al. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. J. Clin. Invest. 128, 5531–5548 (2018). The study demonstrates that AR is a key negative regulator of stromal fibroblast activation into CAFs by parallel suppression of senescence and CAF effector genes.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foersch, S. et al. Prognostic relevance of androgen receptor expression in renal cell carcinomas. Oncotarget 8, 78545–78555 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, B. et al. Vascular mimicry induced by m6A mediated IGFL2-AS1/AR axis contributes to pazopanib resistance in clear cell renal cell carcinoma. Cell Death Discov. 9, 121 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, B. et al. Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through lncRNA-TANAR. Oncogene 40, 1674–1689 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Q. et al. Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. Nat. Commun. 8, 918 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acosta-Lopez, S. et al. The androgen receptor expression and its activity have different relationships with prognosis in hepatocellular carcinoma. Sci. Rep. 10, 22046 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett. 555, 216037 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Tuteja, G., Schug, J. & Kaestner, K. H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 148, 72–83 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, N. et al. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov. 10, 172 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, H. et al. Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives β-catenin/T cell factor-dependent hepatocarcinogenesis. J. Clin. Invest. 121, 3159–3175 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolis, M. et al. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat. Commun. 12, 7033 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, H. et al. Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt/β-catenin signaling. EBioMedicine 35, 155–166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, L. et al. Androgen/androgen receptor axis maintains and promotes cancer cell stemness through direct activation of Nanog transcription in hepatocellular carcinoma. Oncotarget 7, 36814–36828 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeter, C. R., Yang, T., Wang, J., Chao, H.-P. & Tang, D. G. NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells 33, 2381–2390 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, J.-J. et al. Androgens drive sexual dimorphism in liver metastasis by promoting hepatic accumulation of neutrophils. Cell Rep. 39, 110987 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harlos, C., Musto, G., Lambert, P., Ahmed, R. & Pitz, M. W. Androgen pathway manipulation and survival in patients with lung cancer. Horm. Cancer 6, 120–127 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, T. et al. Androgen receptor gene methylation related to colorectal cancer risk. Endocr. Connect. 8, 979–987 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oram, S. W., Liu, X. X., Lee, T.-L., Chan, W.-Y. & Lau, Y.-F. C. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 6, 154 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Zhang, D. J., Qiu, Y., Kido, T. & Lau, Y.-F. C. The Y-located proto-oncogene TSPY exacerbates and its X-homologue TSPX inhibits transactivation functions of androgen receptor and its constitutively active variants. Hum. Mol. Genet. 26, 901–912 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, S. et al. UXT is a novel and essential cofactor in the NF-κB transcriptional enhanceosome. J. Cell Biol. 178, 231–244 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., Chen, K., Zhang, Q., Cheng, H. & Zhou, R. Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem. J. 456, 55–66 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, A. et al. Androgen receptor activation induces senescence in thyroid cancer cells. Cancers 15, 2198 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connell, T. J. et al. Androgen activity is associated with PD-L1 downregulation in thyroid cancer. Front. Cell Dev. Biol. 9, 663130 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, C.-K. et al. Aberrant expression of androgen receptor associated with high cancer risk and extrathyroidal extension in papillary thyroid carcinoma. Cancers 12, 1109 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chukkalore, D., MacDougall, K., Master, V., Bilen, M. A. & Nazha, B. Adrenocortical carcinomas: molecular pathogenesis, treatment options, and emerging immunotherapy and targeted therapy approaches. Oncologist 29, 738–746 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705.e9 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noel, J. C. et al. Androgen receptor expression in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix. Int. J. Gynecol. Pathol. 27, 437–441 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Matsumoto, T. et al. Androgen promotes squamous differentiation of atypical cells in cervical intraepithelial neoplasia via an ELF3-dependent pathway. Cancer Med 12, 10816–10828 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamal, A. M. et al. Androgen receptors are acquired by healthy postmenopausal endometrial epithelium and their subsequent loss in endometrial cancer is associated with poor survival. Br. J. Cancer 114, 688–696 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, D. A., Simitsidellis, I., Collins, F. & Saunders, P. T. K. Evidence of androgen action in endometrial and ovarian cancers. Endocr. Relat. Cancer 21, T203–T218 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mizushima, T. & Miyamoto, H. The role of androgen receptor signaling in ovarian cancer. Cells 8, 176 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, N.-K., Huang, S.-L., Lu, H.-P., Chang, T.-C. & Chao, C. C.-K. Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: analysis of the androgen receptor. Oncotarget 6, 27065–27082 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, N. & Nanda, R. Androgen receptor agonism in advanced oestrogen receptor-positive breast cancer. Lancet Oncol. 25, 269–270 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Collins, L. C. et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod. Pathol. 24, 924–931 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha, J. et al. Distribution of breast cancer molecular subtypes within receptor classifications: lessons from the I-SPY2 Trial and FLEX Registry. J. Clin. Oncol. 40, 592–592 (2022).

    Article 

    Google Scholar
     

  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) & Davies, C. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

    Article 

    Google Scholar
     

  • Pan, H. et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aouad, P. et al. Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence. Nat. Commun. 13, 4975 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickey, T. E. et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat. Med. 27, 310–320 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseinzadeh, L. et al. The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol. 25, 44 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scabia, V. et al. Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor. Nat. Commun. 13, 3127 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ionescu, S., Nicolescu, A. C., Marincas, M., Madge, O.-L. & Simion, L. An update on the general features of breast cancer in male patients — a literature review. Diagnostics 12, 1554 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Severson, T. M. et al. Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat. Commun. 9, 482 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, M. et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20, 119–131 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chia, K. M., Liu, J., Francis, G. D. & Naderi, A. A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia 13, 154–166 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naderi, A., Chia, K. M. & Liu, J. Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Res. 13, R36 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farmer, P. et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24, 4660–4671 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safarpour, D., Pakneshan, S. & Tavassoli, F. A. Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am. J. Cancer Res. 4, 353–368 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-Y. et al. Genomic characteristics of triple negative apocrine carcinoma: a comparison to triple negative breast cancer. Exp. Mol. Med. 55, 1451–1461 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choupani, E. et al. Newly developed targeted therapies against the androgen receptor in triple-negative breast cancer: a review. Pharmacol. Rev. 75, 309–327 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lehmann, B. D. et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 16, 406 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Batalla, I., Vargas-Delgado, M. E., von Amsberg, G., Janning, M. & Loges, S. Influence of androgens on immunity to self and foreign: effects on immunity and cancer. Front. Immunol. 11, 1184 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozdemir, B. C. & Dotto, G. P. Sex hormones and anticancer immunity. Clin. Cancer Res. 25, 4603–4610 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, T. et al. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat. Rev. Cancer 24, 338–355 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018). This meta-analysis discusses sex-related differences in the efficacy of ICIs and underscores the need for more inclusive trials.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pala, L., De Pas, T. & Conforti, F. Boosting anticancer immunotherapy through androgen receptor blockade. Cancer Cell 40, 455–457 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Ther. 29, 1988–2000 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022). This work shows that AR blockade enhances the effectiveness of immune-checkpoint therapy in prostate cancer by preventing CD8+ T cell exhaustion and boosting IFNγ production.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, H. et al. Androgen conspires with the CD8+ T cell exhaustion program and contributes to sex bias in cancer. Sci. Immunol. 7, eabq2630 (2022). This study demonstrates that AR signalling promotes CD8+ T cell exhaustion through the upregulation of TCF1 in a CD8+ T cell-intrinsic manner.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease. Sci. Immunol. 5, eabb9726 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C. et al. Androgen receptor-mediated CD8+ T cell stemness programs drive sex differences in antitumor immunity. Immunity 55, 1268–1283.e9 (2022). This paper implicates AR in sex-biased CD8+ T cell self-renewal versus exhaustion programmes in cancer progression and in responses to cancer immunotherapy.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Sex-biased T-cell exhaustion drives differential immune responses in glioblastoma. Cancer Discov. 13, 2090–2105 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, L. et al. Role of ILC2s in solid tumors: facilitate or inhibit? Front. Immunol. 13, 886045 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, L. et al. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 384, eadk6200 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laffont, S. et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J. Exp. Med. 214, 1581–1592 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, M. et al. High dose androgen suppresses natural killer cytotoxicity of castration-resistant prostate cancer cells via altering AR/circFKBP5/miRNA-513a-5p/PD-L1 signals. Cell Death Dis. 13, 746 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinho-Schwermann, M. et al. Androgen receptor signaling blockade enhances NK cell-mediated killing of prostate cancer cells and sensitivity to NK cell checkpoint blockade. Preprint at bioRxiv https://doi.org/10.1101/2023.11.15.567201 (2023).

    Article 

    Google Scholar
     

  • Becerra-Diaz, M., Song, M. & Heller, N. Androgen and androgen receptors as regulators of monocyte and macrophage biology in the healthy and diseased lung. Front. Immunol. 11, 1698 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cioni, B. et al. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat. Commun. 11, 4498 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuang, K.-H. et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J. Exp. Med. 206, 1181–1199 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X. et al. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 43, 1163–1177 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Markman, J. L. et al. Loss of testosterone impairs anti-tumor neutrophil function. Nat. Commun. 11, 1613 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsamraae, M. et al. Androgen receptor inhibition suppresses anti-tumor neutrophil response against bone metastatic prostate cancer via regulation of TβRI expression. Cancer Lett. 579, 216468 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vancolen, S., Sébire, G. & Robaire, B. Influence of androgens on the innate immune system. Andrology 11, 1237–1244 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spencer, J. B., Klein, M., Kumar, A. & Azziz, R. The age-associated decline of androgens in reproductive age and menopausal black and white women. J. Clin. Endocrinol. Metab. 92, 4730–4733 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, J. M. & Vermeulen, A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev. 26, 833–876 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biffi, G. & Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 101, 147–176 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Procopio, M. G. et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17, 1193–1204 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bordignon, P. et al. Dualism of FGF and TGF-β signaling in heterogeneous cancer-associated fibroblast activation with ETV1 as a critical determinant. Cell Rep. 28, 2358–2372.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capolupo, L. et al. Sphingolipids control dermal fibroblast heterogeneity. Science 376, eabh1623 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, C. et al. Cancer-associated fibroblast senescence and its relation with tumour-infiltrating lymphocytes and PD-L1 expressions in intrahepatic cholangiocarcinoma. Br. J. Cancer 126, 219–227 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. Senescent carcinoma-associated fibroblasts upregulate IL8 to enhance prometastatic phenotypes. Mol. Cancer Res. 15, 3–14 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belle, J. I. et al. Senescence defines a distinct subset of myofibroblasts that orchestrates immunosuppression in pancreatic cancer. Cancer Discov. 14, 1324–1355 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fan, G. et al. TSPAN8+ myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci. Transl. Med. 16, eadj5705 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, J. et al. Senescent CAFs mediate immunosuppression and drive breast cancer progression. Cancer Discov. 14, 1302–1323 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitsiou, E., Pulido, T., Campisi, J., Alimirah, F. & Demaria, M. Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging. J. Invest. Dermatol. 141, 1119–1126 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachelor, M. A. & Bowden, G. T. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin. Cancer Biol. 14, 131–138 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazzeo, L. et al. ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation, bridging androgen receptor loss to AP-1 activation. Nat. Commun. 15, 1038 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karoutas, A. & Akhtar, A. Functional mechanisms and abnormalities of the nuclear lamina. Nat. Cell Biol. 23, 116–126 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, S. et al. Nuclear lamin A/C phosphorylation by loss of androgen receptor leads to cancer-associated fibroblast activation. Nat. Commun. 15, 7984 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, C.-P. et al. Androgen receptor in cancer-associated fibroblasts influences stemness in cancer cells. Endocr. Relat. Cancer 24, 157–170 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cioni, B. et al. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol. Oncol. 12, 1308–1323 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. LMO2 upregulation due to AR deactivation in cancer-associated fibroblasts induces non-cell-autonomous growth of prostate cancer after androgen deprivation. Cancer Lett. 503, 138–150 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Eisermann, K. & Fraizer, G. The androgen receptor and VEGF: mechanisms of androgen-regulated angiogenesis in prostate cancer. Cancers 9, 32 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres-Estay, V. et al. Androgen receptor in human endothelial cells. J. Endocrinol. 224, R131–R137 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godoy, A. et al. Androgen receptor is causally involved in the homeostasis of the human prostate endothelial cell. Endocrinology 149, 2959–2969 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godoy, A. et al. Androgen deprivation induces rapid involution and recovery of human prostate vasculature. Am. J. Physiol. Endocrinol. Metab. 300, E263–E275 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizk, J., Sahu, R. & Duteil, D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 199, 109306 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouche, C. & Quail, D. F. Fueling the tumor microenvironment with cancer-associated adipocytes. Cancer Res 83, 1170–1172 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Artime, A. et al. Castration promotes the browning of the prostate tumor microenvironment. Cell Commun. Signal. 21, 267 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doron, H., Pukrop, T. & Erez, N. A blazing landscape: neuroinflammation shapes brain metastasis. Cancer Res 79, 423–436 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatson, J. W. & Singh, M. Activation of a membrane-associated androgen receptor promotes cell death in primary cortical astrocytes. Endocrinology 148, 2458–2464 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cioffi, G. et al. Sex differences in odds of brain metastasis and outcomes by brain metastasis status after advanced melanoma diagnosis. Cancers 16, 1771 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, S., Scotto Di Carlo, F. & Gianfrancesco, F. The osteoclast traces the route to bone tumors and metastases. Front. Cell Dev. Biol. 10, 886305 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farach-Carson, M. C., Lin, S.-H., Nalty, T. & Satcher, R. L. Sex differences and bone metastases of breast, lung, and prostate cancers: do bone homing cancers favor feminized bone marrow? Front. Oncol. 7, 163 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawano, H. et al. Suppressive function of androgen receptor in bone resorption. Proc. Natl Acad. Sci. USA 100, 9416–9421 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pederson, L. et al. Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc. Natl Acad. Sci. USA 96, 505–510 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J.-F., Lin, P.-W., Tsai, Y.-R., Yang, Y.-C. & Kang, H.-Y. Androgens and androgen receptor actions on bone health and disease: from androgen deficiency to androgen therapy. Cells 8, 1318 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J. E. et al. Guidance for the assessment and management of prostate cancer treatment-induced bone loss. A consensus position statement from an expert group. J. Bone Oncol. 25, 100311 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Culig, Z. et al. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br. J. Cancer 81, 242–251 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loddick, S. A. et al. AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo. Mol. Cancer Ther. 12, 1715–1727 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neklesa, T. et al. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J. Clin. Oncol. 37, 259–259 (2019).

    Article 

    Google Scholar
     

  • Gao, X. et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40, 17–17 (2022).

    Article 

    Google Scholar
     

  • Chen, Q.-H., Munoz, E. & Ashong, D. Insight into recent advances in degrading androgen receptor for castration-resistant prostate cancer. Cancers 16, 663 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myung, J.-K. et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J. Clin. Invest. 123, 2948–2960 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurice-Dror, C. et al. A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor N-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest. New Drugs 40, 322–329 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. & Lan, T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front. Pharmacol. 15, 1451957 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhasin, S. et al. Drug Insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat. Clin. Pract. Endocrinol. Metab. 2, 146–159 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicialTrials.gov https://clinicaltrials.gov/study/NCT02689427 (2023).

  • Lim, B. et al. Phase 2 study of neoadjuvant enzalutamide and paclitaxel for luminal androgen receptor-enriched TNBC: Trial results and insights into “ARness”. Cell Rep. Med. 5, 101595 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicialTrials.gov https://www.clinicaltrials.gov/study/NCT02007512 (2024).

  • Krop, I. et al. A randomized placebo controlled phase ii trial evaluating exemestane with or without enzalutamide in patients with hormone receptor-positive breast cancer. Clin. Cancer Res. 26, 6149–6157 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmieri, C. et al. Activity and safety of enobosarm, a novel, oral, selective androgen receptor modulator, in androgen receptor-positive, oestrogen receptor-positive, and HER2-negative advanced breast cancer (Study G200802): a randomised, open-label, multicentre, multinational, parallel design, phase 2 trial. Lancet Oncol. 25, 317–325 (2024). This phase II trial demonstrates that enobosarm, a selective AR modulator, shows anti-tumour activity and clinical benefit in women in postmenopause with ER-positive, HER2-negative and AR-positive advanced breast cancer, supporting further investigation of AR activation as a therapeutic strategy.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conforti, F. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: a systematic review and meta-analysis. J. Natl Cancer Inst. 111, 772 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powles, T. et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat. Med. 28, 144–153 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatachalam, S., McFarland, T. R., Agarwal, N. & Swami, U. Immune checkpoint inhibitors in prostate cancer. Cancers 13, 2187 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicialTrials.gov https://www.clinicaltrials.gov/study/NCT02971761 (2022).

  • Yuan, Y. et al. A phase II clinical trial of pembrolizumab and enobosarm in patients with androgen receptor-positive metastatic triple-negative breast cancer. Oncologist 26, 99–e217 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicialTrials.gov https://clinicaltrials.gov/study/NCT03650894 (2024).

  • US National Library of Medicine. ClinicialTrials.gov https://www.clinicaltrials.gov/study/NCT03942653 (2024).

  • Iwashyna, T. J. & McPeake, J. Choosing outcomes for clinical trials: a pragmatic perspective. Curr. Opin. Crit. Care 24, 428–433 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kensler, K. H. et al. Prognostic and predictive value of androgen receptor expression in postmenopausal women with estrogen receptor-positive breast cancer: results from the Breast International Group Trial 1–98. Breast Cancer Res. 21, 30 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirko, K. A. et al. The impact of race and ethnicity in breast cancer — disparities and implications for precision oncology. BMC Med. 20, 72 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siu, D. H. W. et al. Framework for the use of external controls to evaluate treatment outcomes in precision oncology trials. JCO Precis. Oncol. 8, e2300317 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fushimi, C. et al. A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Ann. Oncol. 29, 979–984 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H.-H. et al. Evolving personalized therapy for castration-resistant prostate cancer. BioMedicine 4, 2 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozdemir, B. C. & Dotto, G. P. Racial differences in cancer susceptibility and survival: more than the color of the skin? Trends Cancer 3, 181–197 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zavala, V. A. et al. Cancer health disparities in racial/ethnic minorities in the United States. Br. J. Cancer 124, 315–332 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, B.-D. et al. Androgen receptor-target genes in African American prostate cancer disparities. Prostate Cancer 2013, 763569 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, L. & Nyborg, H. Racial/ethnic variations in male testosterone levels: a probable contributor to group differences in health. Steroids 57, 72–75 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaston, K. E., Kim, D., Singh, S., Ford, O. H. & Mohler, J. L. Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer. J. Urol. 170, 990–993 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T. & Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sartor, O., Zheng, Q. & Eastham, J. A. Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 53, 378–380 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giovannucci, E. et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl Acad. Sci. USA 94, 3320–3323 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. Harnessing artificial intelligence to improve clinical trial design. Commun. Med. 3, 191 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shamseddin, M. et al. Contraceptive progestins with androgenic properties stimulate breast epithelial cell proliferation. EMBO Mol. Med. 13, e14314 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berner, A. M. Improving understanding of cancer in the gender diverse population. Nat. Rev. Cancer 21, 537–538 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vera-Badillo, F. E. et al. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J. Natl Cancer Inst. 106, djt319 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. The prognostic value of androgen receptor (AR) in HER2-enriched metastatic breast cancer. Endocr. Relat. Cancer 27, 199–208 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bozovic-Spasojevic, I. et al. The prognostic role of androgen receptor in patients with early-stage breast cancer: a meta-analysis of clinical and gene expression data. Clin. Cancer Res. 23, 2702–2712 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. E., Kang, S. H., Lee, S. J. & Bae, Y. K. Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer. Ann. Surg. Oncol. 22, 82–89 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Shi, Z. et al. Evaluation of predictive and prognostic value of androgen receptor expression in breast cancer subtypes treated with neoadjuvant chemotherapy. Discov. Oncol. 14, 49 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget 7, 46482–46491 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, M. et al. Prognostic significance of androgen receptor expression in triple negative breast cancer: a systematic review and meta-analysis. Clin. Breast Cancer 20, e385–e396 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boon, E. et al. A clinicopathological study and prognostic factor analysis of 177 salivary duct carcinoma patients from The Netherlands. Int. J. Cancer 143, 758–766 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, B., Dogan, S., Haroon Al Rasheed, M. R., Ghossein, R. & Katabi, N. Androgen receptor immunohistochemistry in salivary duct carcinoma: a retrospective study of 188 cases focusing on tumoral heterogeneity and temporal concordance. Hum. Pathol. 93, 30–36 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atef, A., El-Rashidy, M. A., Elzayat, S. & Kabel, A. M. The prognostic value of sex hormone receptors expression in laryngeal carcinoma. Tissue Cell 57, 84–89 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, M., Zhang, J., Zhou, J., Xu, Y. & Wang, J. Sex-related hormone receptor in laryngeal squamous cell carcinoma: correlation with androgen estrogen-ɑ and prolactin receptor expression and influence of prognosis. Acta Otolaryngol. 138, 66–72 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • R, S. et al. Expression of sex hormones in oral squamous cell carcinoma: a systematic review on immunohistochemical studies. Cureus 14, e25384 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adnan, Y. et al. Hormone receptors AR, ER, PR and growth factor receptor Her-2 expression in oral squamous cell carcinoma: correlation with overall survival, disease-free survival and 10-year survival in a high-risk population. PLoS One 17, e0267300 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan, L. et al. Expression profile and prognostic role of sex hormone receptors in gastric cancer. BMC Cancer 12, 566 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. et al. Expression of estrogen receptors and androgen receptor and their clinical significance in gastric cancer. Oncotarget 8, 40765–40777 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albasri, A. M. & Elkablawy, M. A. Clinicopathological and prognostic significance of androgen receptor overexpression in colorectal cancer. Experience from Al-Madinah Al-Munawarah, Saudi Arabia. Saudi Med. J. 40, 893–900 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jönsson, J.-M. et al. Sex steroid hormone receptor expression affects ovarian cancer survival. Transl. Oncol. 8, 424–433 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kruchten, M. et al. Hormone receptors as a marker of poor survival in epithelial ovarian cancer. Gynecol. Oncol. 138, 634–639 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. The clinicopathological significance and prognostic value of androgen receptor in endometrial carcinoma: a meta-analysis. Front. Oncol. 12, 905809 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H., Leppert, J. T. & Peehl, D. M. A protective role for androgen receptor in clear cell renal cell carcinoma based on mining TCGA data. PLoS One 11, e0146505 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, G. et al. The expression and evaluation of androgen receptor in human renal cell carcinoma. Urology 83, 510.e19-24 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Szabados, B. et al. Androgen receptor expression is a predictor of poor outcome in urothelial carcinoma. Front. Urol. 2, https://doi.org/10.3389/fruro.2022.863784 (2022).

  • Tripathi, A. & Gupta, S. Androgen receptor in bladder cancer: a promising therapeutic target. Asian J. Urol. 7, 284–290 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vizoso, F. J. et al. Liver expression of steroid hormones and Apolipoprotein D receptors in hepatocellular carcinoma. World J. Gastroenterol. 13, 3221–3227 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Significance and mechanism of androgen receptor overexpression and androgen receptor/mechanistic target of rapamycin cross-talk in hepatocellular carcinoma. Hepatology 67, 2271–2286 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grant, L. et al. Androgen receptor and Ki67 expression and survival outcomes in non-small cell lung cancer. Horm. Cancer 9, 288–294 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, N. et al. Androgen receptor, although not a specific marker for, is a novel target to suppress glioma stem cells as a therapeutic strategy for glioblastoma. Front. Oncol. 11, 616625 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simińska, D. et al. Androgen receptor expression in the various regions of resected glioblastoma multiforme tumors and in an in vitro model. Int. J. Mol. Sci. 23, 13004 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, H. S. et al. Expression of DBC1 and androgen receptor predict poor prognosis in diffuse large B cell lymphoma. Transl. Oncol. 6, 370–381 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mostaghel, E. A. et al. Androgen receptor expression in mantle cell lymphoma: potential novel therapeutic implications. Exp. Hematol. 49, 34–38.e2 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magri, F. et al. Expression of estrogen and androgen receptors in differentiated thyroid cancer: an additional criterion to assess the patient’s risk. Endocr. Relat. Cancer 19, 463–471 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, G. et al. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions. eLife 12, RP88742 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paczkó, M. et al. A neural network-based model framework for cell-fate decisions and development. Commun. Biol. 7, 323 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, D. & Majda, A. J. Using machine learning to predict extreme events in complex systems. Proc. Natl Acad. Sci. 117, 52–59 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snow, O., Lallous, N., Ester, M. & Cherkasov, A. Deep learning modeling of androgen receptor responses to prostate cancer therapies. Int. J. Mol. Sci. 21, 5847 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jong, A. C. et al. Predicting response to enzalutamide and abiraterone in metastatic prostate cancer using whole-omics machine learning. Nat. Commun. 14, 1968 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, A. M. Decoding immune kinetics: unveiling secrets using custom-built mathematical models. Nat. Methods 21, 744–747 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, X. et al. Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope. Nat. Commun. 14, 7848 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yankeelov, T. E. et al. Designing clinical trials for patients who are not average. iScience 27, 108589 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Christmas Pop-up