Select Page


  • Van Den Bergh, B. R. H., Mulder, E. J. H., Mennes, M. & Glover, V. Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237–258 (2005).

  • Davis, E. P. et al. Prenatal exposure to maternal depression and cortisol influences infant temperament. J. Am. Acad. Child Adolesc. Psychiatry 46, 737–746 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Seth, S., Lewis, A. J. & Galbally, M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: a systematic literature review. BMC Pregnancy Childbirth 16, 124 (2016).

  • Lautarescu, A., Craig, M. C. & Glover, V. Prenatal stress: Effects on fetal and child brain development. Int. Rev. Neurobiol. 150, 17–40 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Merced-Nieves, F. M., Dzwilewski, K. L. C., Aguiar, A., Lin, J. & Schantz, S. L. Associations of prenatal maternal stress with measures of cognition in 7.5-month-old infants. Dev. Psychobiol. 63, 960–972 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lawrence, P. J., Creswell, C., Cooper, P. J. & Murray, L. The role of maternal anxiety disorder subtype, parenting and infant stable temperamental inhibition in child anxiety: a prospective longitudinal study. J. Child Psychol. Psychiatry 61, 779–788 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Huizink, A. C., De Medina, P. R., Mulder, E. J. H., Visser, G. H. A. & Buitelaar, J. K. Prenatal maternal stress, HPA axis activity, and postnatal infant development. Int. Congr. Ser. 1241, 65–71 (2002).

    Article 

    Google Scholar
     

  • Felder, J. N. et al. Prenatal maternal objective and subjective stress exposures and rapid infant weight gain. J. Pediatr. 222, 45–51 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oyetunji, A. & Chandra, P. Postpartum stress and infant outcome: a review of current literature. Psychiatry Res. 284, 112769 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Badr, L. K., Ayvazian, N., Lameh, S. & Charafeddine, L. Is the effect of postpartum depression on mother-infant bonding universal?. Infant Behav. Dev. 51, 15–23 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Carro, M. G., Grant, K. E., Gotlib, I. H. & Compas, B. E. Postpartum depression and child development: an investigation of mothers and fathers as sources of risk and resilience. Dev. Psychopathol. 5, 567–579 (1993).

    Article 

    Google Scholar
     

  • Djurhuus, C. B. et al. Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans. Am. J. Physiol. Endocrinol. Metab. 286, E488 – E494 (2004).

  • Reynolds, R. M. Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes. J. Steroid Biochem. Mol. Biol. 122, 3–9 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinde, K. et al. Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament. Behav. Ecol. 26, 269–281 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol.  17, 233–247 (2017).

    CAS 

    Google Scholar
     

  • Xu, C., Lee, S. K., Zhang, D. & Frenette, P. S. The Gut microbiome regulates psychological-stress-induced inflammation. Immunity 53, 417-428.e4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dettmer, A. M. et al. Cortisol in neonatal mother’s milk predicts later infant social and cognitive functioning in rhesus monkeys. Child Dev. 89, 525–538 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hollanders, J. J., Heijboer, A. C., van der Voorn, B., Rotteveel, J. & Finken, M. J. J. Nutritional programming by glucocorticoids in breast milk: Targets, mechanisms and possible implications. Best Pract. Res. Clin. Endocrinol. Metab. 31, 397–408 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grey, K. R., Davis, E. P., Sandman, C. A. & Glynn, L. M. Human milk cortisol is associated with infant temperament. Psychoneuroendocrinology 38, 1178–1185 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linderborg, K. M. et al. Interactions between cortisol and lipids in human milk. Int. Breastfeed. J. 15, 1–11 (2020).

    Article 

    Google Scholar
     

  • Ziomkiewicz, A. et al. Psychosocial stress and cortisol stress reactivity predict breast milk composition. Sci. Rep. 11, 11576 (2021).

  • Nolvi, S. et al. Human milk cortisol concentration predicts experimentally induced infant fear reactivity: moderation by infant sex. Dev. Sci. 21, (2018).

  • Mohd Shukri, N. H. et al. Randomized controlled trial investigating the effects of a breastfeeding relaxation intervention on maternal psychological state, breast milk outcomes, and infant behavior and growth. Am. J. Clin. Nutr. 110, 121–130 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Apanasewicz, A. et al. Maternal childhood trauma is associated with offspring body size during the first year of life. Sci. Rep. 12, 19619 (2022).

  • Roselli, C. E. et al. Prolactin expression in the sheep brain. Neuroendocrinology 87, 206–215 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lennartsson, A. K. & Jonsdottir, I. H. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology 36, 1530–1539 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torner, L. Actions of prolactin in the brain: From physiological adaptations to stress and neurogenesis to psychopathology. Front. Endocrinol. 7, 25 (2016).

  • Mitani, S., Amano, I. & Takatsuru, Y. High prolactin concentration during lactation period induced disorders of maternal behavioral in offspring. Psychoneuroendocrinology 88, 129–135 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanna, C. W., Bretherick, K. L., Liu, C. C., Stephenson, M. D. & Robinson, W. P. Genetic variation within the hypothalamus-pituitary-ovarian axis in women with recurrent miscarriage. Hum. Reprod. 25, 2664–2671 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasiec, M. & Misztal, T. Adaptive modifications of maternal hypothalamic-pituitary-adrenal axis activity during lactation and salsolinol as a new player in this phenomenon. Int. J. Endocrinol. 2018, 3786038 (2018).

  • Gustafson, P. E. et al. The role of prolactin in the suppression of the response to restraint stress in the lactating mouse. J. Neuroendocrinol. 36, e13330 (2024)

  • Akers, R. & Kaplan, R. Role of milk secretion in transport of prolactin from blood into milk. Horm. Metab. Res. 21, 362–365 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grove, D. S., Bour, B., Kacsóh, B. & Mastro, A. M. Effect of neonatal milk-prolactin deprivation on the ontogeny of the immune system of the rat. Endocr. Regul. 25, 111–119 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Jergović, M. et al. Circulating Levels of hormones, lipids, and immune mediators in post-traumatic stress disorder—a 3-month follow-up study. Front. Psychiatry 6, 49 (2015).

  • Tissier, L. R., Hodson, D. J., Martin, A. O., Romanò, N. & Mollard, P. Plasticity of the Prolactin (PRL) axis: mechanisms underlying regulation of output in female mice. Adv. Exp. Med. Biol. 846, 139–162 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ho Yuen, B. Prolactin in human milk: the influence of nursing and the duration of postpartum lactation. Am. J. Obstet. Gynecol. 158, 583–586 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellis, L. A. & Picciano, M. F. Bioactive and Immunoreactive Prolactin Variants in Human Milk*. Endocrinology 138, 2711–2720 (1995).

  • Ellis, L. A., Mastro, A. M. & Picciano, M. F. Milk-borne prolactin and neonatal development. J. Mammary Gland Biol. Neoplasia 1, 259-269 (1996).

  • Levine, S. & Muneyyirci-Delale, O. Stress-induced hyperprolactinemia. Pathophysiol. Clin. Approach. 2018, 9253083 (2018).

    Article 

    Google Scholar
     

  • Parker, V. J. & Douglas, A. J. Stress in early pregnancy: maternal neuro-endocrine-immune responses and effects. J. Reprod. Immunol. 85, 86–92 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam, S., Jan, S. & Bogdan, Z. Kwestionariusz Zmian Życiowych (KZŻ). Przegląd Psychol. 42, 27–49 (1999).


    Google Scholar
     

  • Seneviratne, B. I. B., Linton, I., Wilkinson, R., Rowe, W. & Spice, M. Cold pressor test in diagnosis of coronary artery disease: echophonocardiographic method. Br. Med. J. 286, 1924–1926 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Rahe, R. H. Epidemiological studies of life change and illness. Int. J. Psychiatry Med. 6, 133–146 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martins, V. J. B. et al. Normal cortisol response to cold pressor test, but lower free thyroxine, after recovery from undernutrition. Br. J. Nutr. 115, 14–23 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Voorn, B. et al. Breast-milk cortisol and cortisone concentrations follow the diurnal rhythm of maternal hypothalamus-pituitary-adrenal axis activity. J. Nutr. 146, 2174–2179 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Partonen, T. Prolactin in Winter Depression. Medical Hypotheses I Medical Hypothrsrs, 43, 163-164 (1994).

  • Ziomkiewicz, A. et al. Maternal distress and social support are linked to human milk immune properties. Nutrients 13, 1857 (2021).

  • Juster, R.-P., Perna, A., Marin, M.-F., Sindi, S. & Lupien, S. J. Timing is everything: anticipatory stress dynamics among cortisol and blood pressure reactivity and recovery in healthy adults. Stress 15, 569–577 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hellhammer, D. H., Wüst, S. & Kudielka, B. M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34, 163–171 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sussams, R. et al. Psychological stress, cognitive decline and the development of dementia in amnestic mild cognitive impairment. Sci. Rep. 10, 3618 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinrichs, M., Neumann, I. & Ehlert, U. Lactation and stress: protective effects of breast-feeding in humans. Stress 5, 195–203 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altemus, M., Deuster, P. A., Galliven, E., Carter, C. S. & Gold, P. W. Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women. J. Clin. Endocrinol. Metab. 80, 2954–2959 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Heinrichs, M. et al. Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. J. Clin. Endocrinol. Metab. 86, 4798–4804 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mizuhata, K., Taniguchi, H., Shimada, M., Hikita, N. & Morokuma, S. Effects of breastfeeding on stress measured by saliva cortisol level and perceived stress. AsianPacific Isl. Nurs. J. 5, 128–138 (2020).

    Article 

    Google Scholar
     

  • Meinlschmidt, G., Martin, C., Neumann, I. D. & Heinrichs, M. Maternal cortisol in late pregnancy and hypothalamic–pituitary–adrenal reactivity to psychosocial stress postpartum in women. Stress 13, 163–171 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amico, J. A., Johnston, J. M. & Vagnucci, A. H. Suckling-induced attenuation of plasma cortisol concentrations in postpartum lactating women. Endocr. Res. 20, 79–87 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grattan, D. R. et al. Prolactin receptors in the brain during pregnancy and lactation: implications for behavior. Horm. Behav. 40, 115–124 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zielinska-Pukos, M. A. et al. Factors influencing cortisol concentrations in breastmilk and its associations with breastmilk composition and infant development in the first six months of lactation. Int. J. Environ. Res. Public. Health 19, 14809 (2022).

  • Cadore, E. et al. Correlations between serum and salivary hormonal concentrations in response to resistance exercise. J. Sports Sci. 26, 1067–1072 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Aparicio, M. et al. Human milk cortisol and immune factors over the first three postnatal months: relations to maternal psychosocial distress. PLOS One 15, e0233554 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bremel, R. D. & Gangwer, M. I. Effect of adrenocorticotropin injection and stress on milk cortisol content. J. Dairy Sci. 61, 1103–1108 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kato, E. A., Hsu, B. R., Raymoure, W. J. & Kuhn, R. W. Evidence for the direct transfer of corticosteroid-binding globulin from plasma to whey in the guinea pig. Endocrinology 117, 1404–1408 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulski, J. K. & Hartmann, P. E. Changes in the concentration of cortisol in milk during different stages of human lactation. Aust. J. Exp. Biol. Med. Sci. 59, 769–778 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beery, A. K. et al. Acute decrease in mothers’ cortisol following nursing and milk expression. Horm. Behav. 153, 105387 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Termeulen, S. B., Butler, W. R. & Natzke, R. P. Rapidity of cortisol transfer between blood and milk following adrenocorticotropin injection. J. Dairy Sci. 64, 2197–2200 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verkerk, G. A., Phipps, A. M. & Matthews, L. R. Milk cortisol concentrations as an indicator of stress in lactating dairy cows. Proc. N. Z. Soc. Anim. Prod. 56, 77-79 (1996).

  • Lacey, K. et al. A prospective study of neuroendocrine and immune alterations associated with the stress of an oral academic examination among graduate students. Psychoneuroendocrinology 25, 339–356 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y., Zhou, D. & Wang, X. Increased serum cortisol and growth hormone levels in earthquake survivors with PTSD or subclinical PTSD. Psychoneuroendocrinology 33, 1155–1159 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Sex differences in peripheral monoamine transmitter and related hormone levels in chronic stress mice with a depression-like phenotype. PeerJ 10, e14014 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faron-Górecka, A. et al. Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Res. 1555, 48–59 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Groër, M. W. Differences between exclusive breastfeeders, formula-feeders, and controls: a study of stress, mood, and endocrine variables. Biol. Res. Nurs. 7, 106–117 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Olff, M., Güzelcan, Y., de Vries, G.-J., Assies, J. & Gersons, B. P. R. HPA- and HPT-axis alterations in chronic posttraumatic stress disorder. Psychoneuroendocrinology 31, 1220–1230 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochoa-Amaya, J. E. et al. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats. Neuroimmunomodulation 17, 386–395 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drago, F., Pulvirenti, L., Spadaro, F. & Pennisi, G. Effects of TRH and prolactin in the behavioral despair (swim) model of depression in rats. Psychoneuroendocrinology 15, 349–356 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glasow, A. et al. Functional aspects of the effect of prolactin (PRL) on adrenal steroidogenesis and distribution of the PRL receptor in the human adrenal gland. J. Clin. Endocrinol. Metab. 81, 3103–3111 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Schams, D. & Karg, H. Hormones in milk. Ann. N. Y. Acad. Sci. 464, 75–86 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Faron-Górecka, A. et al. The involvement of prolactin in stress-related disorders. Int. J. Environ. Res. Public. Health 20, 3257 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bermejo-Haro, M. Y., Camacho-Pacheco, R. T., Brito-Pérez, Y. & Mancilla-Herrera, I. The hormonal physiology of immune components in breast milk and their impact on the infant immune response. Mol. Cell. Endocrinol. 572, 111956 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • al’Absi, M., Nakajima, M. & Bruehl, S. Stress and pain: modality-specific opioid mediation of stress-induced analgesia. J. Neural Transm. 128, 1397–1407 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sofowora, G. G., Singh, I., He, H. B., Wood, A. J. J. & Stein, C. M. Effect of acute transdermal estrogen administration on basal, mental stress and cold pressor-induced sympathetic responses in postmenopausal women. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 15, 193–199 (2005).

    Article 

    Google Scholar
     

  • Wu, T., Snieder, H. & de Geus, E. Genetic influences on cardiovascular stress reactivity. Neurosci. Biobehav. Rev. 35, 58–68 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Goodin, B. R., Smith, M. T., Quinn, N. B., King, C. D. & McGuire, L. Poor sleep quality and exaggerated salivary cortisol reactivity to the cold pressor task predict greater acute pain severity in a non-clinical sample. Biol. Psychol. 91, 36–41 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link